
© 2000, 2001 by IOtech, Inc. April 2001 Printed in the United States of America

Personal488 User's Manual

For Windows® 95/98/Me/NT/2000

the smart approach to instrumentation ™

IOtech, Inc.
25971 Cannon Road

Cleveland, OH 44146-1833
Phone: (440) 439-4091

Fax: (440) 439-4093
E-mail: sales@iotech.com
Internet: www.iotech.com

Personal488
User's Manual

For Windows 95/98/Me/NT/2000

p/n 495-0903 Rev. 3.0

mailto:sales@iotech.com
http://www.iotech.com

ii Personal488 User’s Manual for Windows95/98/Me/NT/2000

Personal488 User’s Manual for Windows95/98/Me/NT/2000 iii

Warranty Information
Your IOtech warranty is as stated on the product warranty card. You may contact IOtech by phone,
fax machine, or e-mail in regard to warranty-related issues.

Phone: (440) 439-4091, fax: (440) 439-4093, e-mail: sales@iotech.com

Limitation of Liability
IOtech, Inc. cannot be held liable for any damages resulting from the use or misuse of this product.

Copyright, Trademark, and Licensing Notice
All IOtech documentation, software, and hardware are copyright with all rights reserved. No part of this product may be
copied, reproduced or transmitted by any mechanical, photographic, electronic, or other method without IOtech’s prior written
consent. IOtech product names are trademarked; other product names, as applicable, are trademarks of their respective
holders. All supplied IOtech software (including miscellaneous support files, drivers, and sample programs) may only be used
on one installation. You may make archival backup copies.

FCC Statement

IOtech devices emit radio frequency energy in levels compliant with Federal Communications Commission rules (Part 15) for
Class A devices. If necessary, refer to the FCC booklet How To Identify and Resolve Radio-TV Interference Problems (stock #
004-000-00345-4) which is available from the U.S. Government Printing Office, Washington, D.C. 20402.

CE Notice

Many IOtech products carry the CE marker indicating they comply with the safety and emissions standards of the
European Community. As applicable, we ship these products with a Declaration of Conformity stating which
specifications and operating conditions apply.

Warnings, Cautions, Notes, and Tips
Refer all service to qualified personnel. This caution symbol warns of possible personal injury or equipment damage
under noted conditions. Follow all safety standards of professional practice and the recommendations in this manual.
Using this equipment in ways other than described in this manual can present serious safety hazards or cause equipment
damage.
This warning symbol is used in this manual or on the equipment to warn of possible injury or death from electrical
shock under noted conditions.

This ESD caution symbol urges proper handling of equipment or components sensitive to damage from electrostatic
discharge. Proper handling guidelines include the use of grounded anti-static mats and wrist straps, ESD-protective
bags and cartons, and related procedures.

This symbol indicates the message is important, but is not of a Warning or Caution category. These notes can be of
great benefit to the user, and should be read.

In this manual, the book symbol always precedes the words “Reference Note.” This type of note identifies the location
of additional information that may prove helpful. References may be made to other chapters or other documentation.

Tips provide advice that may save time during a procedure, or help to clarify an issue. Tips may include additional
reference.

Specifications and Calibration

Specifications are subject to change without notice. Significant changes will be addressed in an addendum or revision to the
manual. As applicable, IOtech calibrates its hardware to published specifications. Periodic hardware calibration is not
covered under the warranty and must be performed by qualified personnel as specified in this manual. Improper calibration
procedures may void the warranty.

Quality Notice

IOtech has maintained ISO 9001 certification since 1996. Prior to shipment, we thoroughly test our products and
review our documentation to assure the highest quality in all aspects. In a spirit of continuous improvement, IOtech
welcomes your suggestions.

mailto:sales@iotech.com

iv Personal488 User’s Manual for Windows95/98/Me/NT/2000

Your order was carefully inspected prior to shipment. When you receive your system,
carefully unpack all items from the shipping carton and check for physical signs of damage
that may have occurred during shipment. Promptly report any damage to the shipping agent
and your sales representative. Retain all shipping materials in case the unit needs to be
returned to the factory.

Personal488 User’s Manual for Windows95/98/Me/NT/2000 04-10-01 v

Table of Contents
1 – Personal488 Overview …… 1-1

2 – CD-ROM, Driver 488 Software Packages …… 2-1

3 – Installation …… 3-1
Windows® 95 Users …… 3-3
Windows® 98 Users …… 3-9
Windows® Me Users…… 3-15
Windows® NT Users …… 3-21
Windows® 2000 Users …… 3-23

4 – Hardware Configuration Reference …… 4-1
PCI488 Users - Automatic Configuration …… 4-1
AT488pnp Users - Automatic Configuration …… 4-1
CARD488 Users - Automatic Configuration …… 4-1
AT488 Configurations …… 4-3
GP488B Configurations …… 4-6
GP488B/MM Configurations …… 4-9

5 – Using IEEE488 …… 5-1
IEEE488 Configuration Utility …… 5-1
WinTest – Driver488 WorkShop …… 5-4
Differences between 32-bit and 16-Bit Driver488 Software …… 5-10
Programming Language Support …… 5-10

Microsoft Visual C++ …… 5-10
Borland C++ …… 5-11
Microsoft Visual BASIC …… 5-12
Borland Delphi …… 5-13
Support for Other Languages …… 5-13
16-Bit Driver488/W95 Compatibility Layer …… 5-13

6 – API Reference …… 6-1

Appendices
A – API Error Codes …… A-1
B – IEEE488 ASCII Code Map …… B-1
C – Troubleshooting …… C-1

The IEEE 488 Bus Standard …… C-1
Analyzing the IEEE Bus …… C-2
Common Problems and Solutions …… C-3
New Standards Simplify Programming …… C-6
Frequently Asked Personal 488 Questions …… C-7

D – Specifications …… D-1
PCI488 Specifications …… D-1
AT488pnp Specifications …… D-1
CARD488 Specifications …… D-1
AT488 Specifications …… D-2
GP488B Specifications …… D-2
GP488B/MM Specifications …… D-2

E – National Instruments—Compatible Drivers …… E-1
Overview …… E-1
Program Requirements …… E-1
Installation …… E-2
Upgrading from a Previous Version …… E-2
Miscellaneous Hints and Tips …… E-2
File Structure …… E-2

vi 04-10-01 Personal488 User’s Manual for Windows95/98/Me/NT/2000

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 Personal488 Overview 1-1

Personal488 Overview 1

Personal488 Hardware Plug-and-Play Bus Type and

Transfer Rate

Personal488/PCI (with PCI488)

Yes 32-bit PCI Bus

1 Mbyte/s

Personal488/ATpnp
(with AT488pnp)

Yes 16-bit ISA Bus

1 Mbyte/s

Personal488/CARD
(with CARD488)

Yes “hot swapping”
PC Card (PCMCIA)

1 Mbyte/s

Personal488/AT (with AT488) No 16-bit ISA-bus

1 Mbyte/s

Personal488

(with GP488B)* No 8-bit ISA-bus

330 Kbyte/s

Personal488/MM

(with GP488B/MM)
* No 8-bit PC/104

330 Kbyte/s

* GP488 boards with serial numbers of 036731 or lower are not supported by Drivers for Windows 9x or
WindowsNT.

Note: Items pictured are not shown to the same scale.

1-2 Personal488 Overview 04-10-01 Personal488 for Windows 95/98/Me/NT/2000

Hardware Products
The family of Personal488 PC/IEEE 488 controller interfaces includes the six (6) interfaces which are
discussed in this manual. All of them are IEEE 488.2 compatible and are supported by 32-bit Driver488
software for Windows 95, 98, Me, 2000 and NT. These interfaces are discussed in the following
Personal488 packages:

Hardware Configurations

Plug-and-Play Devices

• Personal488/PCI (PCI488)
• Personal488/ATpnp (AT488pnp)
• Personal488/Card (Card488)

“Non plug-and-play” Devices

• Personal488/AT (AT488)
• Personal488 (GP488B)
• Personal488/MM

Reference Note:

• Refer to Chapter 4, Hardware Configuration Reference for information concerning
jumpers and switches.

• Refer to Appendix D for hardware specifications.

Software Installation
The installation process consists of running an installation setup program, and for non plug-and-play
products running the Add New Hardware program found in the Windows Control Panel. The installation
setup program will automatically determine the version of Windows (e.g. Windows 95, 98, Me, NT, or
2000) and copy all the necessary drivers and support files to the appropriate destinations.

Install the software before installing the hardware. Since the installation setup program
installs driver and INF files, plug-and-play boards will be automatically configured upon first
startup, thus eliminating the need to insert the CD and browse for support files. For non
plug-and-play devices all that is required to complete the installation is to run “Add New
Hardware.” This will notify Windows that a new device exists.

Acrobat: For installing Adobe Acrobat Reader. Documentation that has been
included on the CD in the Adobe pdf format, can be viewed and printed with use
of the Adobe Reader.

Driver488/DRV

The manuals folder typically contains a .pdf version of the Personal488 User’s
Manual. The Adobe Acrobat Reader is needed to print or read pdf files.
Driver488/NI

Driver488/SUB

Driver488/W31

The Win9x_WinNT folder includes drivers for Windows 95, 98, Me, NT, and
2000.

Note: On Windows systems with AutoPlay enabled, the setup program will
automatically start upon insertion of the CD.

Note: The CD structure is subject to change without notice.

CD Structure

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 CD-ROM, Driver 488 Software Packages 2-1

CD-ROM, Driver 488 Software Packages 2

IOtech, Inc. IEEE 488.2 Software Products

Personal488/PCI – 1 Mbyte/s PCI/IEEE 488.2 Board with Plug & Play, Digital I/O, & Software for PCs
Personal488/Atpnp – 1 Mbyte/s PCI/IEEE 488.2 Board with Plug & Play, Digital I/O, & Software for PCs
Personal488/AT – 1 Mbyte/s IEEE 488.2 Board & Software for PC/Ats
Personal488 – IEEE 488.2 Board & Software for PCs
Personal488/CARD– IEEE 488.2 PC-Card Interface, Cable, & Software for Notebook & Desktop PCs

This CD contains several driver software packages for DOS and Windows. The following table shows
which Driver488 packages can be used with each IEEE 488 Controllers product type.

Folder (In CD Root Directory) ÆÆ Win9x_WinNT W31 DRV SUB

Supported Operating System ÆÆ 2000 9x & Me NT 3x DOS DOS

NI
(Note1)

Personal488 (ISA) � � � � � � �

Personal488AT (ISA) � � � � � � �

Personal488/Atpnp (ISA pnp) � � No No No No �

Personal488PCI (PCI) � � � No No No �

Personal488CARD (PC-CARD) � � No � � � �

Personal 488MM (PC104) � � � � � � �

Note 1: Information pertaining to National Instruments (NI) is provided in Appendix E.

Reference Note:
Refer to Appendix E for National Instruments information.

The CD contains all of the Driver488 packages available for current IEEE 488 Controller products. The
various driver packages are organized according to the directory tree structure shown below. The location
of each package is shown below, along with the name of the installation program in each directory.

Before running any of the installation programs, please look for a read-me file in the same
directory as the install program. When present, it may contain important installation
instructions.

2-2 CD-ROM, Driver 488 Software Packages 04-10-01 Personal488 for Windows 95/98/Me/NT/2000

Driver488 Packages

Driver488/DRV

IEEE 488.2 DOS Device Driver Software.

• Supports IOtech's AT488, GP488B, CARD488, NB488, GP488B/MM, MP488, MP488CT series
boards.

• Includes "ON SRQ" program vectoring for Basic, C, Pascal.
• Compatible with all popular programming languages and spreadsheets.
• Automatically loads into high memory when available.

Driver488/SUB

IEEE 488.2 DOS Subroutine Driver.

• Supports IOtech's AT488, GP488B, CARD488, NB488, GP488B/MM, MP488, MP488CT series
boards.

• Includes "ON SRQ" program vectoring for Basic, C, Pascal.
• Compatible with popular programming languages and spreadsheets such as C, Pascal and QuickBasic.

Driver488/W31

IEEE 488.2 Microsoft Windows Dynamic Link Library

• Supports IOtech's AT488, GP488B, CARD488, NB488, GP488B/MM, MP488, MP488CT series
boards.

• Offers HP-style commands for high & low-level control.
• Designed for Windows' message passing, multi-tasking architecture.
• Includes language interfaces for Microsoft C, Visual C++, Visual Basic, Turbo C, Borland C++.
• Includes an interactive control application for exercising instruments and generating code.
• On-Line Help provides complete command reference as well as examples.

Win9x_WinNT Folder
This folder includes IEEE 488.2 drivers for the following operating systems: Windows 9x, Windows Me,
Windows 2000, and Windows NT.

The setup program automatically detects the operating system and installs the correct drivers.

In regard to Windows 9x, Windows Me, and Windows 2000, the drivers

• Support IOtech's AT488, GP488B, GP488B/MM, PCI488 series boards.
• Integrate IEEE 488.2 control into Microsoft Windows applications.
• Provide true multi-tasking device locking.
• Were specifically designed for the 32-bit Windows environment.

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 Installation 3-1

Installation 3

Windows® 95 Users …… 3-3

Windows® 98 Users …… 3-9
Windows® Me Users …… 3-15
Windows® NT Users …… 3-21

Windows® 2000 Users …… 3-23

IEEE 488 Installation Flowchart

Windows95/98
 /Me/2000

3-2 Installation 04-10-01 Personal488 for Windows 95/98/Me/NT/2000

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 Installation 3-3

Windows 95 Users

Software Installation

• For best results, install the interface after the software installation.
• Due to differences in Windows 95 “Add New Hardware” panels, the following

description may vary slightly.
• If installing a second non plug-and-play interface, skip step 1.
• If installing a second plug-and-play interface, go to “Hardware Installation.”

Step 1
Insert the IEEE488 Software CD. The CD has an auto-run program that will automatically start the
setup program when the CD is inserted into the CD ROM driver. If auto-run is disabled, use Explorer to
launch the Setup.exe found in the root directory of the CD. Follow the screen prompts to install the
software. If non plug-and-play hardware is being installed, proceed to step 2; otherwise proceed to
“Hardware Installation” on page 3-7.

Step 2
Use the “Add New Hardware” program found in the Control Panel to notify Windows 95 that you are
installing new hardware. Refer to the following steps that demonstrate the typical Windows panels
encountered during the “Add New Hardware” program execution:

Start ⇒ Settings ⇒ Control Panel ⇒ Add New Hardware

Windows 95

3-4 Installation 04-10-01 Personal488 for Windows 95/98/Me/NT/2000

Add New Hardware Procedure (non plug-and-play users only):

It is only necessary for users of “non plug-and-play” boards to follow the Add New
Hardware Procedure. If your device is a “plug-and-play device,” skip this procedure.

1. The “Add New Hardware Wizard” displays
an introductory message and prompts you to
click Next.

2. Windows 95 will automatically search for
hardware. Click Next.

3. Click ‘No, the device isn’t in the list’

4. Select the option:

 “No, I want to select the
hardware from a list,” then
click Next.

Windows 95

Personal488 for Windows 95/98/Me/NT/2000 04-06-01 Installation 3-5

5. Choose IEEE488.2
Controllers from the list of
hardware types and click
Next.

6. Windows will now display a
list of devices to install.

Select your specific
Personal488 interface
product.

After making the selection,
click Next.

Windows will now display the
default resource settings for
your interface.

Windows 95

3-6 Installation 04-10-01 Personal488 for Windows 95/98/Me/NT/2000

7. Make note of the displayed
settings, as you must configure
the jumpers and switch settings
before installing an AT488 or
GP488B

8. Click Finish.

9. Click Yes, proceed with
Windows 95 Hardware
Installation.

Windows 95

Personal488 for Windows 95/98/Me/NT/2000 04-06-01 Installation 3-7

 Hardware Installation for Windows 95 Users

 Plug-and-Play Devices

Personal488/PCI
Personal488/ATpnp
Personal488/Card

1. If you have not already done so, shutdown Windows 95 after the IEEE 488 software has been
successfully installed.

2. Remove power from the PC.

3. Physically install your interface. As a quick reference,

Personal488/PCI installs into a 32-bit PCI expansion slot,
Personal488/ATpnp installs into a 16-bit ISA expansion slot, and
Personal488/Card installs into a PC card slot.

4. Return power to the PC. After the computer powers up, Windows will detect your new hardware.

This completes the installation procedure.

“Non plug-and-play” Devices

Personal488/AT (AT488)
Personal488 (GP488Bplus)
Personal488/MM

1. Verify that Windows 95 has properly shutdown.

2. Remove power from the PC.

3. Physically configure the device’s jumpers and switches to match the resource settings Windows
reported during the driver installation.

Non plug-and-play board users: physically configure your board’s jumpers and switches
to match the resource settings Windows reported. If these settings conflict with other
hardware, change the jumpers, switches, and Windows Resource settings to available
resources.

Reference Note:
Refer to Chapter 4, Hardware Configuration Reference for further information
concerning jumpers and switches.

4. Physically install your interface.

5. Return power to the PC.

This completes the installation procedure.

Reference Note:
See page 5-5 for instructions on running WinTest to verify proper installation.

Windows 95

3-8 Installation 04-10-01 Personal488 for Windows 95/98/Me/NT/2000

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 Installation 3-9

Windows 98 Users

Software Installation

• For best results, install the interface after the software installation.
• If installing a second non plug-and-play interface, skip step 1.
• If installing a second plug-and-play interface, go to Hardware Installation, page 3-13.

Step 1

Insert the IEEE488 Software CD. The CD has an auto-run program that will automatically start the
setup program when the CD is inserted into the CD ROM driver. If auto-run is disabled, use Explorer
to launch the Setup.exe found in the root directory of the CD. Follow the screen prompts to install the
software. Then, if non plug-and-play hardware is being installed, proceed to step 2; otherwise proceed
to hardware installation on page 3-13.

Step 2

Use the “Add New Hardware” program found in the Control Panel to notify Windows 98 that you are
installing new hardware. Refer to the following steps that demonstrate the typical Windows panels
encountered during the “Add New Hardware” program execution:

Start ⇒ Settings ⇒ Control Panel ⇒ Add New Hardware

Add New Hardware Procedure (non plug-and-play users only):

It is only necessary for users of “non plug-and-play” boards to follow the Add New
Hardware Procedure. If your device is a “plug-and-play device,” skip this procedure.

1. The “Add New Hardware Wizard”
displays an introductory message
and prompts you to click Next.

Windows 98

3-10 Installation 04-10-01 Personal488 for Windows 95/98/Me/NT/2000

2. Click Next.

3. Select ‘No, the device isn’t in the
list’ and click Next.

4. Select ‘No, I want to select the
hardware from a list’ and click
Next.

Windows 98

Personal488 for Windows 95/98/Me/NT/2000 04-06-01 Installation 3-11

5. Select ‘IEEE 488.2 Controllers’ and
click Next.

6. Windows will now display a list of
devices to install. Select your
specific Personal488 interface
product.

7. After making the selection,
click Next.

Windows will now display the default
resource settings for your interface.

8. Make note of the displayed settings,
as you must configure the jumpers
and switch settings before installing
an AT488 or GP488B.

Windows 98

3-12 Installation 04-10-01 Personal488 for Windows 95/98/Me/NT/2000

9. Click Finish.

10. Click ‘Yes’ and shut down the
computer; then proceed to the next
step.

Windows 98

Personal488 for Windows 95/98/Me/NT/2000 04-06-01 Installation 3-13

Hardware Installation for Windows 98 Users

Plug-and-Play Devices

Personal488/PCI
Personal488/ATpnp
Personal488/Card

1. If you have not already done so, shutdown Windows 98 after the IEEE 488 software has been
successfully installed.

2. Remove power from the PC.

3. Physically install your interface. As a quick reference,

Personal488/PCI installs into a 32-bit PCI expansion slot,
Personal488/ATpnp installs into a 16-bit ISA expansion slot, and
Personal488/Card installs into a PC card slot.

4. Return power to the PC. Windows will detect your new hardware when the computer powers up.

This completes the installation procedure.

“Non plug-and-play” Devices

Personal488/AT (AT488)
Personal488 (GP488B)
Personal488/MM

1. If you have not already done so, shutdown Windows 98 after the IEEE 488 software has been
successfully installed.

2. Remove power from the PC.

3. Physically configure the device’s jumpers and switches to match the resource settings Windows
reported during the driver installation.

Non plug-and-play board users: physically configure your board’s jumpers and switches
to match the resource settings Windows reported. If these settings conflict with other
hardware change the jumpers, switches, and Windows Resource settings to available
resources.

Reference Note:
Refer to Chapter 4, Hardware Configuration Reference for further information concerning
jumpers and switches.

4. Return power to the PC.

This completes the installation procedure.

Windows 98

3-14 Installation 04-10-01 Personal488 for Windows 95/98/Me/NT/2000

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 Installation 3-15

Windows Me Users

Software Installation

• For best results, install the interface after the software installation.
• If installing a second non plug-and-play interface, skip step 1.
• If installing a second plug-and-play interface, go to “Hardware Installation.”

Step 1

Insert the IEEE488 Software CD. The CD has an auto-run program that will automatically start the
setup program when the CD is inserted into the CD ROM driver. If auto-run is disabled, use Explorer
to launch the Setup.exe found in the root directory of the CD. Follow the screen prompts to install the
software. Then if non plug-and-play hardware is being installed, proceed to step 2; otherwise proceed
to Hardware Installation for Windows Me Users on page 3-19.

Step 2

Use the “Add New Hardware” program found in the Control Panel to notify Windows Me that you are
installing new hardware. Refer to the following steps that demonstrate the typical Windows panels
encountered during the “Add New Hardware” program execution:

Start ⇒ Settings ⇒ Control Panel ⇒ Add New Hardware

Add New Hardware Procedure (non plug-and-play users only):

It is only necessary for users of “non plug-and-play” boards to follow the Add New
Hardware Procedure. If your device is a “plug-and-play device,” skip this procedure.

1. The “Add New Hardware Wizard”
displays an introductory message
and prompts you to click Next.

Windows Me

3-16 Installation 04-10-01 Personal488 for Windows 95/98/Me/NT/2000

2. Click Next.

3. Select ‘No, the device isn’t in the
list’ and click Next.

4. Select ‘No, I want to select the
hardware from a list’ and click
Next.

Windows Me

Personal488 for Windows 95/98/Me/NT/2000 04-06-01 Installation 3-17

5. Select ‘IEEE 488.2 Controllers’ and
click Next.

6. Windows will now display a list of
devices to install. Select your
specific Personal488 interface
product.

7. After making the selection, click
Next.

Windows will now display the
default resource settings for your
interface.

8. Make note of the displayed settings,
as you must configure the jumpers
and switch settings before installing
an AT488 or GP488B.

Windows Me

3-18 Installation 04-10-01 Personal488 for Windows 95/98/Me/NT/2000

9. Click Finish.

10. Click ‘Yes’ and shut down the
computer.

At this point, proceed to the next
section, Hardware Installation for
Windows Me Users.

Windows Me

Personal488 for Windows 95/98/Me/NT/2000 04-06-01 Installation 3-19

Hardware Installation for Windows Me Users

Plug-and-Play Devices

Personal488/PCI
Personal488/ATpnp
Personal488/Card

1. If you have not already done so, shutdown Windows Me after the IEEE 488 software has been
successfully installed.

2. Remove power from the PC.

3. Physically install your interface. As a quick reference,

Personal488/PCI installs into a 32-bit PCI expansion slot,
Personal488/ATpnp installs into a 16-bit ISA expansion slot, and
Personal488/Card installs into a PC card slot.

4. Return power to the PC. After the computer powers up, Windows Me will detect your new hardware.

This completes the installation procedure.

“Non plug-and-play” Devices

Personal488/AT (AT488)
Personal488 (GP488B)
Personal488/MM

1. If you have not already done so, shutdown Windows Me after the IEEE 488 software has been
successfully installed.

2. Remove power from the PC.

3. Physically configure the device’s jumpers and switches to match the resource settings Windows Me
reported during the driver installation.

Non plug-and-play board users: physically configure your board’s jumpers and switches
to match the resource settings Windows reported. If these settings conflict with other
hardware change the jumpers, switches, and Windows Resource settings to available
resources.

Reference Note:
Refer to Chapter 4, Hardware Configuration Reference for further information concerning
jumpers and switches.

4. Return power to the PC.

This completes the installation procedure.

Windows Me

3-20 Installation 04-10-01 Personal488 for Windows 95/98/Me/NT/2000

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 Installation 3-21

Windows NT Users

Software Installation

Step 1

Insert the IEEE488 Software CD. The CD has an auto-run program that will automatically start the
setup program when the CD is inserted into the CD ROM driver. If auto-run is disabled, use Explorer
to launch the Setup.exe found in the root directory of the CD.

Step 2

Follow the screen prompts to install the software, then proceed to hardware installation.

Hardware Installation

All Devices

Personal488/AT (AT488)
Personal488 (GP488Bplus)
Personal488/MM
Personal488/PCI

1. Access the Windows Control Panel and launch the IEEE488 configuration program.

2. Highlight your interface (typically IEEE0) and select Properties as shown below:

Selecting “Properties” and “System Resources”

3. Click the Systems Resources button.

If Personal488/PCI is selected, then the System Resources button is not available. Windows
NT is not a plug-and-play operating system, and thus changing resources on a Plug-and-Play
interface is not possible.

Windows NT

3-22 Installation 04-10-01 Personal488 for Windows 95/98/Me/NT/2000

4. Physically configure the device’s jumpers and switches to match the resource settings Windows is
reporting during the driver installation. If these settings conflict with other hardware, change the
jumpers, switches, and Windows Resource settings to available resources.

Reference Note:
Refer to Chapter 4, Hardware Configuration Reference, for more information
regarding jumpers and switches.

5. Shutdown Windows and remove power from your PC.

6. Insert the interface board, securing it appropriately.

7. Return power to the PC.

This completes the installation procedure.

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 Installation 3-23

Windows 2000 Users

Software Installation

• For best results, install the interface after the software installation.
• If installing a second non plug-and-play interface, skip step 1.
• If installing a second plug-and-play interface, go to Hardware Installation, page 3-29.

Step 1

Insert the IEEE488 Software CD. The CD has an auto-run program that will automatically start the
setup program when the CD is inserted into the CD ROM driver. If auto-run is disabled, use Explorer
to launch the Setup.exe found in the root directory of the CD. Follow the screen prompts to install the
software. Then, if non plug-and-play hardware is being installed, proceed to step 2; otherwise proceed
to hardware installation on page 3-29.

Step 2

Use the “Add New Hardware” program found in the Control Panel to notify Windows 2000 that you
are installing new hardware. Refer to the following steps that demonstrate the typical Windows panels
encountered during the “Add New Hardware” program execution:

Start ⇒ Settings ⇒ Control Panel ⇒ Add New Hardware

Add New Hardware Procedure (non plug-and-play users only):

It is only necessary for users of “non plug-and-play” boards to follow the Add New
Hardware Procedure. If your device is a “plug-and-play device,” skip this procedure.

1. After the Add/Remove Hardware
Wizard appears, click Next.

Windows 2000

3-24 Installation 04-10-01 Personal488 for Windows 95/98/Me/NT/2000

2. Select
Add/Troubleshoot a device.

3. Click Next.

The Add/Remove Hardware Wizard
searches for new plug-and-play hardware.

After new hardware is located a screen,
similar to that at the left, appears.

4. Select
Add a new device.

5. Click Next.

Windows 2000

Personal488 for Windows 95/98/Me/NT/2000 04-06-01 Installation 3-25

6. When prompted by the question,
“Do you want Windows to search for
your new hardware?”

Select ‘No, I want to select the
hardware from a list.’

7. Click Next.

8. When asked what type of hardware
you want to install, select
Other devices.

9. Click Next.

Windows will display a list of
manufacturers and device models.

11. Select IOtech Inc.

12. Select your specific Personal488
interface product.

13. Click Next.

Windows 2000

3-26 Installation 04-10-01 Personal488 for Windows 95/98/Me/NT/2000

14. Click Next.
Windows 2000 will install software
for the device.

If Windows could not detect any
hardware settings for the device, a
message box informs you that
hardware settings must be entered
(see the following figure).

15. If Windows could not detect any
hardware settings, as indicated by the
message in step 14, enter the settings.

Refer to Hardware Configuration
Reference (chapter 4) for setting
information.

16. When prompted that “Windows is
ready to install drivers for your new
hardware,” click Next.

Windows 2000

Personal488 for Windows 95/98/Me/NT/2000 04-06-01 Installation 3-27

Windows will inform you that the
hardware was installed.

17. Click Finish.

At this point proceed to the next
section, Hardware Installation for
Windows 2000 Users.

Windows 2000

3-28 Installation 04-10-01 Personal488 for Windows 95/98/Me/NT/2000

Windows 2000

Personal488 for Windows 95/98/Me/NT/2000 04-06-01 Installation 3-29

Hardware Installation for Windows 2000 Users

Plug-and-Play Devices

Personal488/PCI
Personal488/ATpnp
Personal488/Card

1. If you have not already done so, shutdown Windows 2000 after the IEEE 488 software has been
successfully installed.

2. Remove power from the PC.

3. Physically install your interface. As a quick reference,

Personal488/PCI installs into a 32-bit PCI expansion slot,
Personal488/ATpnp installs into a 16-bit ISA expansion slot, and
Personal488/Card installs into a PC card slot.

4. Return power to the PC. After the computer powers up, Windows 2000 will detect your new
hardware.

This completes the installation procedure.

“Non plug-and-play” Devices

Personal488/AT (AT488)
Personal488 (GP488B)
Personal488/MM

1. If you have not already done so, shutdown Windows 2000 after the IEEE 488 software has been
successfully installed.

2. Remove power from the PC.

3. Physically configure the device’s jumpers and switches to match the resource settings Windows 2000
reported during the driver installation.

Non plug-and-play board users: physically configure your board’s jumpers and switches
to match the resource settings Windows reported. If these settings conflict with other
hardware change the jumpers, switches, and Windows Resource settings to available
resources.

Reference Note:
Refer to Chapter 4, Hardware Configuration Reference for further information concerning
jumpers and switches.

4. Return power to the PC.

This completes the installation procedure.

Windows 2000

3-30 Installation 04-10-01 Personal488 for Windows 95/98/Me/NT/2000

Personal488 for Windows 95/98/Me/NT/2000 04-09-01 Hardware Configuration Reference 4-1

Hardware Configuration Reference 4

AT488 Configurations …… 4-3
GP488B Configurations …… 4-7
GP488B/MM Configurations …… 4-11

Hardware Configuration
Plug-and-Play Devices
Plug-and-play devices require no physical configuration of hardware. After installing your software and
hardware [as described in Chapters 2 and 3] the configuration is performed automatically. Note that the
plug-and-play devices are listed in the following table as a product reference only. This chapter contains
no useful information concerning plug-and-play devices.

Non Plug-and-Play Devices
The I/O base address, IRQ, and DMA settings of non plug-and-play devices are determined by the
physical settings of jumpers and DIP switches. This chapter provides the information necessary to
configure these devices.

Plug-and-Play Devices Non Plug-and-Play Devices

PCI488 AT488

Automatic
Configuration.

See page 4-3.

AT488pnp GP488B
Automatic
Configuration.

See page 4-7.

CARD488 GP488B/MM
Automatic
Configuration.

See page 4-11.

Note: The device images are not shown to the same scale.

4-2 Hardware Configuration Reference 04-09-01 Personal488 for Windows 95/98/Me/NT/2000

Personal488 for Windows 95/98/Me/NT/2000 04-09-01 Hardware Configuration Reference 4-3

 AT488 Configurations
The I/O base address, IRQ, and DMA settings are switch/jumper selectable via the following locations on
the AT488 interface board: One 2-microswitch DIP switch labelled S1, one 4-microswitch DIP switch
labelled S2, two 14-pin headers labelled DACK and DRQ, and one 22-pin header labelled IRQ. The DIP
switch settings, and the arrangement of the jumpers on the headers set the hardware configuration.

For the next steps, make sure that the I/O address, IRQ, and DMA set on the interface board are different
from any existing ports in your system. A conflict results when two I/O addresses, IRQs, or DMAs are
the same. (As the exception, additional AT488 interfaces may share the same IRQ and DMA values.) If
there is a conflict, reconfigure the switch/jumper settings. Refer to the following figures as needed.

Configuring the AT488 Interface I/O Base Address

In te rrup t Leve l 5

D M A 16-B it C hanne l 5

Base A dd ress
02E1

In te rrup t
Level 5

A T 4 8 8 D e fau l t S e tt in g s

S 1

D AC K

D R Q

IR Q

S 2

A T 4 8 8 I /O B a se
A d dress S elec tio ns

S 1

42E1 62E 1

22E102E1

5 6 7 0 1 2 3

3 4 5 6 7 9 10 11 12 14 15

 O P E N O P E N O PE N

 O P E N O PE N

1 21 2 1 2

1 2 1 2

1 2 3 4

 O PE N

The factory default I/O base address is 02E1. If this creates a conflict, reset switch S1 according to the
figure and following table. The register addresses will be automatically relocated at fixed offsets from the
base address. If reset, record the new Input/Output (I/O) address being used.

Selected I/O Base
Address
02E1 22E1 42E1 62E1

Register

Automatic Offset Addresses Read Register Write Register
02E1 22E1 42E1 62E1 Data In Data Out
06E1 26E1 46E1 66E1 Interrupt Status 1 Interrupt Mask 1
0AE1 2AE1 4AE1 6AE1 Interrupt Status 2 Interrupt Mask 2
0EE1 2EE1 4EE1 6EE1 Serial Poll Status Serial Poll Mode
12E1 32E1 52E1 72E1 Address Status Address Mode
16E1 36E1 56E1 76E1 CMD Pass Through Auxiliary Mode
1AE1 3AE1 5AE1 7AE1 Address 0 Address 0/1
1EE1 3EE1 5EE1 7EE1 Address 1 End of String

The I/O base address sets the addresses used by the computer to communicate with the IEEE 488 interface
hardware on the board. The address is normally specified in hexadecimal and can be 02E1, 22E1, 42E1, or
62E1. The registers of the IOT7210 IEEE 488 controller chip and other auxiliary registers are then located
at fixed offsets from the base address.

Most versions of Driver488 are capable of managing as many as four IEEE 488 interfaces. To do so, the
interface configurations must be arranged to avoid conflict amongst themselves. No two boards may have
the same I/O address; but they may, and usually should, have the same DMA channel and interrupt level.

4-4 Hardware Configuration Reference 04-09-01 Personal488 for Windows 95/98/Me/NT/2000

Configuring the AT488 Interface Interrupt (IRQ)

S 2

S 2

In te rrup t
Leve l 10

In te rrup t
Leve l 11

In te rrup t
Leve l 12

In te rrup t
Leve l 14

In te rrup t
Leve l 15

IR Q

IR Q

3
4
5
6
7
9

10
11
12
14
15

3
4
5
6
7
9

10
11
12
14
15

In te rrupt
Leve l 6

In te rrupt
Leve l 9

A T 4 8 8 In te rru p t S e le c tio n s

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

 O PE N O PE N

 O PE N O PE N O PE N O PE N O PE N

In te rrup t
Leve l 7

1 2 3 4

 O PE N

In te rrupt
Leve l 3

In te rrupt
Leve l 4

1 2 3 4 1 2 3 4

 O PE N O PE N

In te rrup t
Leve l 5

1 2 3 4

 O PE N

The factory default Interrupt (IRQ) is 5. If this creates a conflict, reset switch S2 and jumper IRQ
according to the figure. The switch and jumper settings must both indicate the same interrupt level
for correct operation with interrupts. If reset, record the new Interrupt (IRQ) being used.

The AT488 interface board may be set to interrupt the PC on the occurrence of certain hardware conditions.
The main board interrupt may be set to IRQ level 3 through 7, 9 through 12, 14, or 15. Interrupts 10
through 15 are only available in a 16-bit slot on an AT-class machine. Interrupt 9 becomes synonymous
with Interrupt 2 when used in a PC/XT bus.

The selected interrupt may be shared among several AT488s in the same PC/AT chassis. The AT488
adheres to the “AT-style” interrupt sharing conventions. When the AT488 requires service, the IRQ
jumper determines which PC interrupt level is triggered. When an interrupt occurs, the interrupting device
must be reset by writing to an I/O address which is different for each interrupt level. The switch settings
determine the I/O address to which the board’s interrupt rearm circuitry responds.

Personal488 for Windows 95/98/Me/NT/2000 04-09-01 Hardware Configuration Reference 4-5

Configuring the AT488 Interface DMA Channel

The factory default DMA channel is 5. If this creates a conflict, reset jumpers DACK and DRQ according
to the figure. Both the DRQ and DACK jumpers must be set to the desired DMA channel for proper
operation. If reset, record the new DMA channel being used.

Direct Memory Access (DMA) is a high-speed method of transferring data from or to a peripheral, such as
a digitizing oscilloscope, to or from the PC’s memory. The AT class machine has seven DMA channels.
Channels 0 to 3 (8-bit), 5, 6, and 7 (16-bit) are available only in a 16-bit slot on a PC/AT-class machine.
Channel 2 is usually used by the floppy disk controller, and is unavailable. Channel 3 is often used by the
hard disk controller in PCs, XTs, and the PS/2 with the ISA bus, but is usually not used in ATs. Channels 5
to 7 are 16-bit DMA channels and offer the highest throughput (up to 1 Megabyte per second). Channels 0
to 3 are 8-bit DMA channels and although slower, they offer compatibility with existing GP488B and
GP488B/MM applications that only made use of 8-bit DMA channels. Under some rare conditions, it is
possible for high-speed transfers on DMA Channel 1 to demand so much of the available bus bandwidth
that simultaneous access of a floppy controller will be starved for data due to the relative priorities of the
two channels.

4-6 Hardware Configuration Reference 04-09-01 Personal488 for Windows 95/98/Me/NT/2000

Personal488 for Windows 95/98/Me/NT/2000 04-09-01 Hardware Configuration Reference 4-7

GP488B Configurations

In te rrup t
Level 5

D M A
C hanne l 1

J3J4

O n-board
8 M H z C lock

J5

J3J4

J5
S W 1

IEEE 488
C onnector

8-B it O ne C a rd E dg e

Base A dd ress
02E1

In te rrup t
Level 5

G P 4 8 8B In ter fa c e B o ard G P 4 8 8B D e fa u lt S et ting s

N o W a it
S tates

S W 1

6
 7

8

 5
 2

 3
 O

P
E

N

1
4

6
 7

 8
 5

 2
 3

 O
P

E
N

1
4

The I/O base address, IRQ, and DMA settings are switch/jumper selectable via the following locations
on the GP488B interface board: One 8-microswitch DIP switch labelled SW1, two 12-pin headers
labelled J3 and J4, and one 3-pin header labelled J5. The DIP switch settings, and the arrangement of
the jumpers on the headers set the hardware configuration.

For the next steps, make sure that the I/O address, IRQ, and DMA, set on the interface board are
different from any existing ports in your system. A conflict results when two I/O addresses, IRQs, or
DMAs are the same. (As the exception, additional GP488B interfaces may share the same IRQ and
DMA values). If there is a conflict, reconfigure the switch/jumper settings. Refer to the following
figures as needed.

Selected I/O Base
Address
02E1 22E1 42E1 62E1

Register

Automatic Offset Addresses Read Register Write Register
02E1 22E1 42E1 62E1 Data In Data Out
06E1 26E1 46E1 66E1 Interrupt Status 1 Interrupt Mask 1
0AE1 2AE1 4AE1 6AE1 Interrupt Status 2 Interrupt Mask 2
0EE1 2EE1 4EE1 6EE1 Serial Poll Status Serial Poll Mode
12E1 32E1 52E1 72E1 Address Status Address Mode
16E1 36E1 56E1 76E1 CMD Pass Through Auxiliary Mode
1AE1 3AE1 5AE1 7AE1 Address 0 Address 0/1
1EE1 3EE1 5EE1 7EE1 Address 1 End of String

4-8 Hardware Configuration Reference 04-09-01 Personal488 for Windows 95/98/Me/NT/2000

Configuring the GP488B Interface I/O Base Address

he factory default I/O base address is 02E1. If this creates a conflict, reset SW1 microswitches 4 and 5
ccording to the figure and following table. The register addresses will be automatically relocated at fixed
ffsets from the base address. If reset, record the new Input/Output (I/O) address being used.

The I/O base address sets the addresses used by the computer to communicate with the IEEE 488 interface
hardware on the board. The address is normally specified in hexadecimal and can be 02E1, 22E1, 42E1, or
62E1. The registers of the IOT7210 IEEE 488 controller chip and other auxiliary registers are then located
at fixed offsets from the base address.

Most versions of Driver488 are capable of managing as many as four IEEE 488 interfaces. To do so, the
interface configurations must be arranged to avoid conflict amongst themselves. No two boards may have
the same I/O address; but they may, and usually should, have the same DMA channel and interrupt level.

Configuring the GP488B Interface Interrupt (IRQ)

J4

IR Q 7

IR Q 5
IR Q 6

IR Q 4

IR Q 2
IR Q 3

S W 1

In te rrupt
Leve l 6

In te rrupt
Leve l 2

In te rrupt
Leve l 3

In te rrupt
Leve l 4

G P 4 8 8B In ter rup t S e lec t io ns

6
 7

 8

6
 7

 8

6
 7

 8

6
 7

 8

 5 5 5 5

 2
 3

 2
 3

 2
 3

 2
 3

 O
P

E
N

 O
P

E
N

 O
P

E
N

 O
P

E
N

11 1 1

4

4

4

4

In te rrup t
Leve l 5

6
 7

 8
 5

 2
 3

 O
P

E
N

1
4

6
 7

 8
 5

 2
 3

 O
P

E
N

1
4

In te rrup t
Leve l 7

The factory default Interrupt (IRQ) is 5. If this creates a conflict, reset SW1 microswitches 1, 2,
and 3, and jumper J4 according to the figure. The switch and jumper settings must both indicate
the same interrupt level for correct operation with interrupts. If reset, record the new Interrupt
(IRQ) being used.

Personal488 for Windows 95/98/Me/NT/2000 04-09-01 Hardware Configuration Reference 4-9

The GP488B interface board may be set to interrupt the PC on the occurrence of certain hardware
conditions. The level of the interrupt generated is set by J4. The GP488B adheres to the “AT-style”
interrupt sharing conventions. When an interrupt occurs, the interrupting device must be reset by writing to
I/O address 02FX, where X is the interrupt level (from 0 to 7). This interrupt response level is set by
switches 1, 2, and 3 of SW1 which must be set to correspond to the J4 interrupt level setting.

Configuring the GP488B Interface DMA Channel

J3

C hanne l 1

G P 4 8 8B D M A C h a n n e l S elec tio ns

C hanne l 2 C hanne l 3

The factory default DMA channel is 1. If this creates a conflict, reset jumper J3 according to the figure.
If reset, record the new DMA channel being used.

Direct Memory Access (DMA) is a high-speed method of transferring data from or to a peripheral, such as
a digitizing oscilloscope, to or from the PC’s memory. The PC has four DMA channels, but Channel 0
(Disabled) is used for memory refresh and is not available for peripheral data transfer. Channel 2 is usually
used by the floppy disk controller, and is also unavailable. Channel 3 is often used by the hard disk
controller in PCs, XTs, and the PS/2 with the ISA bus, but is usually not used in ATs. So, depending on
your hardware, DMA Channels 1 and possibly Channel 3 are available. Under some rare conditions, it is
possible for high-speed transfers on DMA Channel 1 to demand so much of the available bus bandwidth
that simultaneous access of a floppy controller will be starved for data due to the relative priorities of the
two channels.

4-10 Hardware Configuration Reference 04-09-01 Personal488 for Windows 95/98/Me/NT/2000

Personal488 for Windows 95/98/Me/NT/2000 04-09-01 Hardware Configuration Reference 4-11

GP488B/MM PC104 Configurations

D M A
C hanne l 1

O n-board
8 M H z C lock

SW 1

JP1

JP2 JP3

P1

In te rrup t
Level 5

JP 2 JP 3 JP 1

G P 4 8 8B /M M P C 1 0 4 In te r fa ce B o a rd G P 4 8 8B /M M P C 1 0 4 D efau l t S e tt in g s

N o W a it
S tates

S W 1
6 7 8 5 2 3

 O PEN

1 4

6 7 8 5 2 3

 O P E N

1 4

In te rrup t
Level 5

The I/O base address, IRQ, and DMA settings are switch/jumper selectable via the following locations
on the GP488B/MM interface board: One 8-microswitch DIP switch labelled SW1, two 12-pin
headers labeled JP2 and JP3, and one 3-pin header labeled JP1. The DIP switch settings, and the
arrangement of the jumpers on the headers set the hardware configuration.

For the next steps, make sure that the I/O address, IRQ, and DMA, set on the interface board are
different from any existing ports in your system. A conflict results when two I/O addresses, IRQs, or
DMAs are the same. (As the exception, additional GP488B/MM interfaces may share the same IRQ
and DMA values). If there is a conflict, reconfigure the switch/jumper settings. Refer to the following
figures as needed.

Selected I/O Base
Address
02E1 22E1 42E1 62E1

Register

Automatic Offset Addresses Read Register Write Register
02E1 22E1 42E1 62E1 Data In Data Out
06E1 26E1 46E1 66E1 Interrupt Status 1 Interrupt Mask 1
0AE1 2AE1 4AE1 6AE1 Interrupt Status 2 Interrupt Mask 2
0EE1 2EE1 4EE1 6EE1 Serial Poll Status Serial Poll Mode
12E1 32E1 52E1 72E1 Address Status Address Mode
16E1 36E1 56E1 76E1 CMD Pass Through Auxiliary Mode
1AE1 3AE1 5AE1 7AE1 Address 0 Address 0/1
1EE1 3EE1 5EE1 7EE1 Address 1 End of String

4-12 Hardware Configuration Reference 04-09-01 Personal488 for Windows 95/98/Me/NT/2000

Configuring the GP488B/MM PC104 Interface I/O Base Address

The factory default I/O base address is 02E1. If this creates a conflict, reset SW1 microswitches 4 and 5
according to the figure and following table. The register addresses will be automatically relocated at fixed
offsets from the base address. If reset, record the new Input/Output (I/O) address being used.

The I/O base address sets the addresses used by the computer to communicate with the IEEE 488 interface
hardware on the board. The address is normally specified in hexadecimal and can be 02E1, 22E1, 42E1, or
62E1. The registers of the IOT7210 IEEE 488 controller chip and other auxiliary registers are then located
at fixed offsets from the base address.

Most versions of Driver488 are capable of managing as many as four IEEE 488 interfaces. To do so, the
interface configurations must be arranged to avoid conflict. No two boards may have the same I/O address;
but they may, and usually should, have the same DMA channel and interrupt level.

Configuring the GP488B/MM PC104 Interface Interrupt (IRQ)

JP 3

IR Q 7

IR Q 5
IR Q 6

IR Q 4

IR Q 2
IR Q 3

S W 1

In te rrupt
Leve l 6

In te rrup t
Leve l 5

In te rrupt
Leve l 2

In te rrupt
Leve l 3

In te rrupt
Leve l 4

G P 4 8 8B /M M P C 1 0 4 In te rru p t S e le c tio n s

6
 7

 8

6
 7

 8

6
 7

 8

6
 7

 8

6
 7

 8

 5 5 5 5 5

 2
 3

 2
 3

 2
 3

 2
 3

 2
 3

 O
P

E
N

 O
P

E
N

 O
P

E
N

 O
P

E
N

 O
P

E
N

111 1 1

4

4

4

4

4

In te rrup t
Leve l 7

6
 7

 8
 5

 2
 3

 O
P

E
N

1
4

The factory default Interrupt (IRQ) is 5. If this creates a conflict, reset SW1 microswitches 1, 2, and 3, and
jumper JP3 according to the figure. The switch and jumper settings must both indicate the same interrupt
level for correct operation with interrupts. If reset, record the new Interrupt (IRQ) being used.

Personal488 for Windows 95/98/Me/NT/2000 04-09-01 Hardware Configuration Reference 4-13

The GP488B/MM interface board may be set to interrupt the PC on the occurrence of certain hardware
conditions. The level of the interrupt generated is set by JP3. The GP488B/MM adheres to the “AT-style”
interrupt sharing conventions. When an interrupt occurs, the interrupting device must be reset by writing to
I/O address 02FX, where X is the interrupt level (from 0 to 7). This interrupt response level is set by
switches 1, 2, and 3 of SW1 which must be set to correspond to the JP3 interrupt level setting.

Configuring the GP488B/MM PC104 Interface DMA Channel

JP 2

Channel 1

G P 4 8 8B /M M P C 1 0 4 D M A C ha n n el S e le ctio n s

Channel 2 Channel 3

The factory default DMA channel is 1. If this creates a conflict, reset jumper JP2 according to the figure.
If reset, record the new DMA channel being used.

Direct Memory Access (DMA) is a high-speed method of transferring data from or to a peripheral, such as
a digitizing oscilloscope, to or from the PC’s memory. The PC has four DMA channels, but Channel 0
(Disabled) is used for memory refresh and is not available for peripheral data transfer. Channel 2 is usually
used by the floppy disk controller, and is also unavailable. Channel 3 is often used by the hard disk
controller in PCs, XTs, and the PS/2 with the ISA bus, but is usually not used in ATs. So, depending on
your hardware, DMA Channels 1 and possibly Channel 3 are available. Under some rare conditions, it is
possible for high-speed transfers on DMA Channel 1 to demand so much of the available bus bandwidth
that simultaneous access of a floppy controller will be starved for data due to the relative priorities of the
two channels.

4-14 Hardware Configuration Reference 04-09-01 Personal488 for Windows 95/98/Me/NT/2000

Personal488 for Windows 95/98/Me/NT/2000 04-09-01 Using IEEE 488 5-1

Using IEEE 488 5

IEEE 488 Configuration Utility …… 5-1
WinTest – Driver488 WorkShop …… 5-4
Differences Between 32-bit and 16-bit Driver488 Software …… 5-10
Programming Language Support …… 5-10

Microsoft Visual C++ …… 5-10
Borland C++ …… 5-11
Microsoft Visual BASIC …… 5-12
Borland Delphi …… 5-13
Support for Other Languages …… 5-13
16-Bit Driver488/W95 Compatibility Layer …… 5-13

IEEE 488 Configuration Utility

The IEEE 488 configuration utility is located in Windows Control Panel. The configuration utility is
primarily used to setup the Interfaces and External Devices. As seen in the following figure, it is similar to
the Device Manager.

Note: By default, the configuration utility always shows four interfaces (IEEE0, IEEE 1, IEEE 2,
& IEEE 3), even when only one interface is actually installed.

Interfaces
The minimum requirement for configuring your system is to make certain the IEEE 488.2 interface is
properly selected and configured.

The Interface Hardware box lists all the
available interfaces. In the figure, IEEE0
is assigned to a Personal488/PCI
interface.

5-2 Using IEEE 488 04-09-01 Personal488 for Windows 95/98/Me/NT/2000

External Devices
Within your IEEE 488.2 application program, a handle accesses devices on the bus. Accessing named
devices creates these handles. For example, the following function call:
handle = OpenName(“Wave”)
returns a handle for a device named Wave.

Each device handle is a means of maintaining a record of the following three configurable parameters:
• IEEE 488 address
• IEEE 488 bus terminators (EOS characters)
• associated time-out period

To easily create named devices, you can use the IEEE 488 configuration utility. An alternative is to use
API function calls to configure devices within an application itself. Using the API function calls to make
and configure external devices eliminates the need to run the IEEE 488 configuration utility every time the
application program is installed onto a different PC.

The IEEE 488 program is located in the
Windows Control Panel. IEEE 488
control buttons consist of the following:

Properties: launches the properties
panel for the selected device.

Add Device: Adds a new generic
device.

Remove: Removes any external devices.
IEEE interfaces cannot be removed.

Rename: Allows renaming of external
devices. Typically, external devices are
named after their manufacture, model, or
function.

Configuration Parameters
Name: External device names are used to convey the configuration information about each device. The
name is used to obtain a handle to that device which will be used by all the API function calls. External
device names can consist of 1 to 32 characters, and the first character must be a letter. The remaining
characters may be letters, numbers, or underscores (_). External device names are NOT case sensitive.
IEEE Bus Address: This is the setting for the IEEE 488 bus address of the board. The IEEE 488 address
consists of a primary address from 00 to 30, and an optional secondary address from 00 to 31.

When a device has multiple secondary addresses, it may be useful to have several different
external device names defined for such a device. In this case, an array of handles could be
maintained for easy access to different IEEE 488 addresses throughout the application.

Timeout (ms): The time out period is the amount of time data transfers wait before reporting a time out
error. If the time out period elapses while waiting for data to be transferred or while transferring data, an
error is generated. The default value for the time out period is 10 seconds (10000 milliseconds).

Bus Terminators: The IEEE 488 bus terminators specify the characters and/or End-or-Identify (EOI)
signal that is to be appended to data that is sent to the external device, or mark the end of data that is
received from the external device.

Incorrectly configured bus terminators often cause many subtle problems. Many newer
IEEE 488.2 instruments have standardized on the Line Feed <LF> character, however
older instruments were free to use any character or character combination. When in
doubt, refer to the instrument’s programming manual or contact the manufacturer.

Personal488 for Windows 95/98/Me/NT/2000 04-09-01 Using IEEE 488 5-3

Each device name is a means of maintaining a record of three configurable parameters:

• IEEE 488 address
• time out period
• EOS terminators

5-4 Using IEEE 488 04-09-01 Personal488 for Windows 95/98/Me/NT/2000

WinTest – Driver488 Workshop
This section pertains to the Wintest utility program. After reviewing the material you should be able to use
Wintest to verify your Driver488 installation and to perform simple communication with your IEEE 488
instruments.

What is Wintest?
Wintest is a utility program included with the Personal488 packages. Its primary application is to exercise
the driver by communicating with instruments on the IEEE 488 bus. Communication is accomplished
using API function calls, which are accessible via the menu bar. Every API function can be exercised
using Wintest. Under the menu items of the Wintest application are all of the API functions calls. Each
menu item represents a category, which are further described below:

Menu Item Group Description
Device Commands dealing with accessing and configuring instruments
Enter Used to read data from an instrument.
Output Used to write data or device-dependent setup commands to an instrument.
Send Low level IEEE 488 commands (LAG, TAG, UNL UNT, etc)
Query Status polling commands
Error Driver query and error handling commands
Events Commands dealing with enabling and disabling bus events
Bus Bus and instrument management commands
Config Driver configuration commands

Why use Wintest?
Wintest can be used to exercise and test every available API command. In addition, since Wintest displays
the command’s function call, it is useful for example purposes.

Who uses Wintest?
The Wintest is an interactive utility intended for individuals:

• New to IOtech’s Personal488 IEEE 488 controllers

• New to IEEE 488 control
• Getting familiar with IEEE 488 instruments
• Performing quick communication tests on instruments
• Performing installation verification

Where is Wintest located?
Wintest is located in the ‘Applications’ folder found under the installation directory. If you choose the
default directory Wintest will be located in

C:\Program Files\IEEE488\Applications\

The installation process sets up a shortcut to Wintest. This shortcut is found under

Start=>Programs =>IOtech Driver488=>Wintest

The shortcut can be used to easily start Wintest.

Personal488 for Windows 95/98/Me/NT/2000 04-09-01 Using IEEE 488 5-5

How can I verify that my Personal488 interface is installed and working?

This section consists of a 6-step walk-through in which Wintest is used to verify instrument
communication.

Step 1

Launch Wintest from the Programs
menu.

Step 2

Select ‘Wave[-1]’ from the devHandle
drop down box.

Step 3

Press the OpenName button.

A Hello window will open and display
driver revisions.

Note: If an error occurred and the
Hello window did not appear, then the
installation failed and Wintest did not
access the drivers. If this occurs run
the installation program found on the
IEEE 488 Software CD.

Step 4

Connect an IEEE 488 instrument to
the Personal488 interface.

5-6 Using IEEE 488 04-09-01 Personal488 for Windows 95/98/Me/NT/2000

Step 5

From the Bus menu select Clear.

Step 6

Verify that (0)result = Clear(0) appears
in the function display, as shown.

If Wintest hangs for a brief period and
then returns (-1)result = Clear(0) then
the interface test has failed.

The Clear command verifies two levels
of communication. First, it verifies
that your instrument will accept a series
of commands from the IEEE 488
Controller. Second, it verifies that
Driver488 was able to receive
confirmation of command execution
(IRQ) from the interface.

The Clear command is an ideal test command since it writes only low-level commands to the IEEE 488 bus.
No data is transferred during the execution of the Clear command. Because all standard IEEE 488 devices
read and evaluate low-level commands; the Clear command test avoids issues such as the instrument’s
IEEE 488 address, device dependent commands and EOS characters that would otherwise be necessary to
know in advance.

How do I communicate with my instrument?
With the exception of transferring binary data or uploading large amounts of data to devices, Wintest can be
used to thoroughly exercise IEEE 488 devices.

Start Wintest and click the devHandle field, which lists your pre-configured devices. For more information
regarding pre-configured devices, refer to the section IEEE 488 Configuration Utility. If no changes were
made to the factory default, the table should include a device called ‘Wave’. Select the device ‘Wave’, then
click the OpenName button. The number [–1] in brackets will change to a positive number
(greater than –1) indicating that the device handle has been assigned. This positive number is the device’s
handle.

Personal488 for Windows 95/98/Me/NT/2000 04-09-01 Using IEEE 488 5-7

What is a device handle?
In its simplest form, a handle is merely a reference or pointer to a specific device on the IEEE 488 bus.
One might ask why not use the IEEE 488 address instead of handles? Drivers of the past did indeed work
this way, however, when issues such as devices with different EOS terminators or time-out setting arose,
control became difficult. Hence, handles are method of conveying not just an address, but also EOS and
time-out information for each device. In addition, it is valid to have multiple handles for one device. For
example, a device might use EOS terminators for setup commands, but when data is downloaded,
specifically binary, it might be more convenient to have a handle where EOS is set to none.

If you have not already done so, select your device from the devHandle drop down box and press the
OpenName button. For the sake of discussion, we chose our device called Wave.

The Name (devHandle) combo box lists
all the available pre-configured devices.

When the OpenName button is pressed, the function OpenName is actually called. The parameter that
OpenName accepts is a string that represents a name of a pre-configured device. If the string name does
not exist, a handle is not created. For this example, we see that the device Wave is now open and the
function display area shows the actual function call with parameters.

In the function display area, the left-hand number in parenthesis is the value returned by the function call
during execution. Generally, if the command is successfully completed, the number is zero (0) and if an
error occurred it is minus one (–1). Other functions such as Output, Enter and Spoll return more
meaningful values such as the number of characters transferred or the serial poll status byte. Refer to the
API reference section for more detailed meanings of function return values.

A typical communication sequence consists of
• opening a device
• sending setup commands
• reading data

The following screen shots demonstrate this sequence.

Note that opening a device returns a handle that is used in all subsequent calls. The handle is merely an
instrument descriptor containing address, terminator, and time out information.

5-8 Using IEEE 488 04-09-01 Personal488 for Windows 95/98/Me/NT/2000

Upon opening the first device, a Hello
response window appears.

The response window displays data
information.

To write data or device-dependent setup commands to an instrument use the Output function. The Output
function is a general-purpose write function. However, passing the handle to Output temporarily converts
it to a write command specific to one instrument. When selecting the Output function, Wintest will
automatically use the most current handle.

Select the Output command. An
options panel will open where the only
enable option is the data string to write.
In this example we will enter ‘W1X’ in
the Output Dialog box (not show).
‘W1X’ programs our device to generate
a specific wave-form type. Keep in
mind that the string of characters
‘W1X’ is a device-dependent command
exclusive to our Wave device. You
may have an instrument with a different
command set.

Refer to the API reference for
additional information regarding
Output commands

To read data from an instrument, use the Enter functions. The Enter function is a general-purpose read
function. However, passing the handle to Enter temporarily converts it from general-purpose to a read
function specific to one instrument. When selecting the Enter function, Wintest will automatically use the
most current handle.

Select a command from the Enter
menu.

Personal488 for Windows 95/98/Me/NT/2000 04-09-01 Using IEEE 488 5-9

For this example, we select the Enter
command. The Enter command,
returns the number of characters
actually read. In this example the
return is 256.

The Close command is used to close
an open device handle. Close should
be called before ending a program. For
the most part, all handles will be
forcibly closed when a program
terminates. However, in some
instances handles can remain active due
to the driver remaining in memory after
program termination. If a handle
remains open, no other programs will
be able to access it including the
program that left the handle open.

This completes a simple transaction. Your application will no doubt be more complex; however, it will still
consist of

• opening a device name
• programming a device
• reading data from the device

In this example we only discussed a small subset of the available API commands. You can use WinTest to
explore other API function calls. Refer to the API Reference section of this manual for additional
information regarding each command.

5-10 Using IEEE 488 04-09-01 Personal488 for Windows 95/98/Me/NT/2000

Differences Between 32-bit and 16-bit Driver488 Software

General Differences
The following “bulleted items” are the general differences between the 32-bit Driver488 software
(for Windows 9x and Windows NT) and the16-bit Driver488 software (for Windows 3.X).

With the 32-bit driver:
• There is no RS-232 serial support.
• The function Hello now returns two lines of ID: One for the Dynamic Link Library (DLL)

and one for the device driver.
• The library function prototypes have changed to reflect standard Windows types.
• The include file has been renamed to: IOTIEEE.H

Specific Differences
The following highlight the specific differences in the API command functions, between the 32-bit
Driver488 software and the16-bit Driver488 software.

Functions Obsolete for 32-bit Drivers
 The parameters that these functions set are now set by a provided Windows Control Panel configuration
utility and have therefore been made obsolete for the 32-bit driver.

ClockFrequency
DmaChannel
IntLevel

IOAddress
LightPen
SysController

Functions Supported by 32-bit Drivers
 The following functions are supported by 32-bit drivers, but not by 16-bit drivers.

MakeNewDevice

OnEventVDM (Console mode applications)
TermQuery
TimeOutQuery

Functions that are Enhanced in the 32-bit Drivers
 These are updated functions:

ControlLine
Hello

KeepDevice

Programming Language Support
Driver488/W95 and Driver488/WNT both provide native language support for Microsoft Visual C++,
Visual Basic, Borland C++ and Borland Delphi. The following sections describe support for these 32-bit
languages. In some cases, instructions are provided for particular versions of the language.

Although instructions are provided, compiler manufacturers may change their methods, thereby making the
instructions obsolete for a particular compiler. This does not mean that the language and version lack
support. It does, however, indicate that modifications may be needed as directed by the manufacturer of the
compiler.

Microsoft Visual C++
This section is based on use with 32-bit Microsoft Visual C++ V6.0. The procedure may need modified for
other versions of Visual C++ . If this is the case, refer to Microsoft documentation for the required
changes.

Although the project build procedures may differ, earlier 32-bit versions of Visual C++ (V2.0 or later)
should function well.

If using versions earlier than V2.0, e.g., V1.0 or V1.56, support can only be attained by using the 16-Bit
Driver488/W95 Compatibility Layer [see section below] since these versions of Visual C++ are 16-bit
only. In this case, the Visual C++ support from the Driver488/W31 should be used to develop and build
the application.

Personal488 for Windows 95/98/Me/NT/2000 04-09-01 Using IEEE 488 5-11

The IOTSLPIB.DLL and corresponding export library IOTSLPIB.LIB were developed and built using
Microsoft Visual C++. Therefore, all that is needed is to include the IOTIEEE.H file into the source code
include statements and link to the IOTSLPIB.LIB export library file located.

By default, all language support files and examples are located in:

<InstallDirectory>\IEEE488\Programming Language Support\Example Programs\C

To begin your first project, perform the following:

1. Launch Microsoft Visual C++ from Developers Studio.

2. Under the File menu select New then select Project.

3. If using an existing example then select Console Mode Application otherwise select a project
type which best serves your needs.

4. Follow the project wizard instructions.

5. Under the Project menu select Add to Project then select Files.

6. Add the IOTIEEE.H, IOTERROR.H , IOTSLPIB.LIB files to the project by browsing to the
language support described above.

7. If using an existing example then add the example to the project in the same manner. Otherwise
use existing or new C++ files by placing #include IOTIEEE.H and #include IOTERROR.H
statements before any references to IEEE 488 functions in the file.

8. Under the Build menu select Build or Build All.

The project should now be built.

9. Save your project by selecting File menu then selecting Save Workspace.

Borland C++
This section is based on use with 32-bit Borland C++ V6.0. The procedure may need modified for other
versions of Borland C++. If this is the case, refer to Borland C++ documentation for the required changes.

Though the project build procedures may be different, earlier 32-bit versions of Borland C++ (4.0 or later)
should function as well as version 6.0.

If using versions earlier than V4.0, such as V3.11, support can only be attained by using the 16-Bit
Driver488/W95 Compatibility Layer (see section below). This is because these versions of Borland C++
are only 16-bit. In this case, the Borland C++ support from the Driver488/W31 should be used to develop
and build the application.

The IOTSLPIB.DLL has been developed and built using Microsoft Visual C++. However, a Borland C++
compatible export library IOTSLPIB.LIB is available.

Borland C++ IOTSLPIB.LIB and other language support files and examples are located in:

<InstallDirectory>\IEEE488\Programming Language Support\Example Programs\C

To begin your first project, perform the following:

1. Launch Borland C++ IDE.

2. Start a new project.

3. Add IOTSLPIB.LIB to the project.

4. Add an existing example program or create a new .cpp file.

5. If creating a new .cpp file place include statements for IOTIEEE.H
and IOTERROR.H before any references to the IEEE 488 functions.

6. Set the “Pre-compiled header” option to “None.”

7. Set the “Treat enum types as ints” option.

8. Save the project.

As of the writing of this manual these options are located on the Compiler tab on the
Program Options dialog in the Borland C++ IDE. However, these settings are subject to
change by the compiler manufacturer.

5-12 Using IEEE 488 04-09-01 Personal488 for Windows 95/98/Me/NT/2000

Microsoft Visual Basic
This section is based on 32-bit Microsoft Visual Basic V4.0, V5.0 and V6.0. The procedure may need
modified for other versions of Visual Basic. If this is the case, refer to Microsoft documentation for the
required changes.

If using earlier versions, such as V1.0, V2.0 or V3.0 then support can only be attained by using the 16-Bit
Driver488/W95 Compatibility Layer (see section below) since these versions of Visual Basic are 16-bit
only. In this case, the Visual Basic support from the Driver488/W31 should be used to develop and build
the application.

Visual Basic language support files and examples are located in:

<InstallDirectory>\IEEE488\Programming Language Support\Example Programs\VB

To begin your first project perform the following:

To use Visual BasicV5.0 - V6.0 with a supplied example:
1. Launch Visual Basic

2. From the "New Project" dialog box select the "Existing" tab.

3. To use Visual Basic support from an existing example then navigate to the Visual Basic project
examples and select the desired project.

If the default settings were accepted during installation the project examples will be located in

C:\Program Files\IEEE488\Programming Language Support\Example Programs\VB

The Visual Basic examples were created using a sub 6.0 version. This results in a message
during the load operation that simply states the file was created using a previous version of
VB. If the file is saved it will be saved in the 6.0 format.

To use Visual Basic V4.0 with a supplied example:
1. Launch Visual Basic.

2. From the File menu select Open Project.

3. Add the Visual Basic header file by navigating to the IEEE 488 Visual Basic project folder. If the
default settings were accepted during installation the project examples will be located at

C:\Program Files\IEEE488\Programming Language Support\Example Programs\VB.

4. Add IOTIEEE.BAS.

5. Navigate to the IEEE 488 Visual Basic project folder and select the desired example.

To add IEEE 488 support to a new or existing Visual Basic project:
1. Launch Visual Basic.

2. Open a new project.

3. Include the IOTIEEE.BAS file by selecting Project ⇒ Add Module.

4. Select the “Existing” tab and navigate to the IEEE 488 Visual Basic project folder.
If the default settings were accepted during installation the folder should be located at

C:\Program Files\IEEE488\Programming Language Support\Example Programs\VB.

Personal488 for Windows 95/98/Me/NT/2000 04-09-01 Using IEEE 488 5-13

Borland Delphi
This section is based on 32-bit Borland Delphi V4.0. The procedure may need modified for other versions
of Borland Delphi. If this is the case, refer to Borland documentation for the required changes.

Although the project build procedures may differ, earlier 32-bit versions of Borland Delphi (V2.0 or later)
should function well.

If using versions earlier than V2.0, such as V1.0 or V1.56 support can only be attained by using the 16-Bit
Driver488/W95 Compatibility Layer (see section below). This is because these versions of Visual C++ are
only 16-bit. In this case, the Visual C++ support from the Driver488/W31 should be used to develop and
build the application.

The location for the Borland Delphi language support files (32-bit) and examples is

<InstallDirectory>\IEEE488\Programming Language Support\Example Programs\Delphi.

To use Delphi V4.0 with a supplied example:
1. Launch Delphi.
2. If starting from one of the supplied examples, select Open Project from the File menu.
3. If using Delphi support from an existing example, navigate to the Delphi project examples.

If the default settings were accepted during installation the project examples will be located in

C:\ProgramFiles \IEEE488\Programming Language Support\Example Programs\Delphi.

4. Select the desired example.

To add IEEE 488 support to a new or existing Delphi project:
1. Launch Delphi.
2. Include the IOTIEEE.PAS file by selecting Project ⇒ Add to Project.
3. Navigate to the IEEE 488 Delphi project folder.

If the default settings were accepted during installation the project examples will be located in

C:\Program Files\IEEE488\Programming Language Support\Example Programs\Delphi.

Support for Other Languages
Any language capable of dynamically linking to a DLL may be used with this product. Although the
IOTSLPIB.DLL was built using Microsoft Visual C++, the DLL may be dynamically linked to any
application that can dynamically link to a DLL.

The same is true for languages supported under Windows3.1, but not included with the Driver488/WIN
product. If the desired language is a 16-bit language that can dynamically link to a 16-bit DLL, then the
16-Bit Driver488/W95 Compatibility Layer (DRVR488.DLL) may be used, as discussed shortly.

If using a 32-bit C language, other than those mentioned in this chapter, it may be possible to statically link
to the IOTSLPIB.DLL. However, you may not be able to link using the IOTSLPIB.LIB in its original
Microsoft Visual C++ format. Many C language compilers have import facilities that allow importing of
Microsoft library (.LIB) files into a library file format native to the particular compiler. Consult your
compiler’s documentation for further information on importing Microsoft Visual C++ library files.

16-Bit Driver488/W95 Compatibility Layer
Unlike Driver488/WNT, Driver488/W95 supports backward compatibility for applications written in the
16-bit environment of the Driver488/W31 (formerly named Driver488/WIN) product. Support is provided
through a Dynamic Link Library [DRVR488.DLL] and through various language-specific header files that
will allow recompilation of 16-bit applications.

If Driver488/W31 has been previously installed on your Windows/9x system, the setup
program will automatically replace the 16-bit version DLL in the WINDOWS\SYSTEM
directory.

5-14 Using IEEE 488 04-09-01 Personal488 for Windows 95/98/Me/NT/2000

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 API Reference 6-1

API Reference 6

This chapter contains the API command reference for Driver488/W95 and Driver488/WNT, using the
C language. The following commands are presented in alphabetical order for ease of use.

Abort
Syntax INT WINAPI Abort(DevHandleT devHandle);

devHandle refers to either an IEEE 488 hardware interface or an external device. If
devHandle refers to an external device, the Abort command will act on the
hardware interface to which the external device is attached.

Returns -1 if error

Bus States IFC, *IFC (if SC)

ATN•MTA (if *SC•CA)

Example errorflag = Abort(ieee);

See Also MyTalkAddr, Talk, UnTalk

As the System Controller (SC), whether Driver488 is the Active Controller or not, the Abort command causes the
Interface Clear (IFC) bus management line to be asserted for at least 100 microseconds. By asserting IFC,
Driver488 regains control of the bus even if one of the devices has locked it up during a data transfer. Asserting
IFC also makes Driver488 the Active Controller. If a Non System Controller was the Active Controller, it is
forced to relinquish control to Driver488. Abort forces all IEEE 488 device interfaces into a quiescent state.

If Driver488 is a Non System Controller in the Active Controller state (*SC•CA), it asserts Attention (ATN), which
stops any bus transactions, and then sends its My Talk Address (MTA) to “Untalk” any other Talkers on the bus.
It does not (and cannot) assert IFC.

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 API Reference 6-2

Arm
Syntax INT WINAPI Arm(DevHandleT devHandle, ArmCondT condition);

devHandle refers to either an IEEE 488 hardware interface or an external device. If
devHandle refers to an external device, the Arm command acts on the hardware
interface to which the external device is attached.

condition is one of the following: acSRQ, acDigMatch

Returns -1 if DevHandleT is an illegal device or interface

otherwise, the current state of the event trigger flag

Bus States None

Example errorflag = Arm(ieee, acSRQ);

See Also Disarm, OnEvent, DigArmSetup, DigSetup

The Arm command allows Driver488 to signal to the user-specified function when one or more of the
specified conditions occurs. Arm sets a flag for each implementation of the conditions that are user-
indicated. Arm conditions may be combined using the bitwise OR operator.

The following Arm conditions are supported:

Condition Description

acSRQ The Service Request bus line is asserted.

acDigMatch The digital port match condition has occurred. See notes.

Notes:

(1) The acDigMatch event is only available with the Personal488/ATpnp and the Personal488/PCI.

(2) The use of the acDigMatch event requires configuration of the digital port via DigSetup and
setting a match value via DigArmSetup.

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 API Reference 6-3

AutoRemote
Syntax INT WINAPI AutoRemote(DevHandleT devHandle, BOOL flag);

devHandle refers to either an IEEE 488 hardware interface or an external device. If
devHandle refers to an external device, the AutoRemote command acts on the
hardware interface to which the external device is attached.

flag may be either OFF or ON

Returns -1 if DevHandleT is an illegal device or interface

otherwise, the previous state is returned

Bus States None

Example errorcode = AutoRemote(ieee,ON);

See Also Local, Remote, EnterX, OutputX

The AutoRemote command enables or disables the automatic assertion of the Remote Enable (REN) line by
Output. When AutoRemote is enabled, Output automatically asserts REN before transferring any data.
When AutoRemote is disabled, there is no change to the REN line. AutoRemote is on by default.

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 API Reference 6-4

BusAddress
Syntax INT WINAPI BusAddress (DevHandleT devHandle, BYTE primary,

BYTE secondary);

devHandle refers to either an IEEE 488 hardware interface or an external device.

primary is the IEEE 488 bus primary address of the specified device.

secondary is the IEEE 488 bus secondary address of the specified device. If the specified
device is an IEEE 488 hardware interface, this value must be -1 since there are no
secondary addresses for the IEEE 488 hardware interface. For no secondary address, a
-1 must be specified.

Returns -1 if error

Bus States None

Example errorcode = BusAddress(dmm,14,0);

See Also MakeDevice

The BusAddress command sets the IEEE 488 bus address of the IEEE 488 hardware interface or an
external device. Every IEEE 488 bus device has an address that must be unique within any single
IEEE 488 bus system. The default IEEE 488 bus address for Driver488 is 21, but this may be changed if it
conflicts with some other device.

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 API Reference 6-5

CheckListener
Syntax INT WINAPI CheckListener(DevHandleT devHandle, BYTE primary,

BYTE secondary);

devHandle refers to either an IEEE 488 hardware interface or an external device. If
devHandle refers to an external device, the CheckListener command acts on the
hardware interface to which the external device is attached.

primary is the primary bus address to check for a Listener (00 to 30)

secondary is the secondary bus address to check for a Listener (00 to 31). For no
secondary address, a -1 must be specified

Returns -1 if error

otherwise it returns a 1 if a listener was found at the specified address, or a 0 if a listener
was not found at the specified address.

Bus States ATN•UNL, LAG, (check for NDAC asserted)

Example result = CheckListener(ieee,15,4);
if (result == 1)
{
printf(“Device found at specified address.\n”);
}
if (result == 0)
{
printf(“Device not found at specified address.\n”);
}

See Also FindListener, BusAddress

The CheckListener command checks for the existence of a device on the IEEE 488 bus at the specified
address.

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 API Reference 6-6

Clear
Syntax INT WINAPI Clear(DevHandleT devHandle);

devHandle refers to either an IEEE 488 hardware interface or an external device. If
devHandle refers to a hardware interface, then a Device Clear (DCL) is sent. If
devHandle refers to an external device, a Selected Device Clear (SDC) is sent.

Returns -1 if error

Bus States ATN•DCL (all devices)

ATN•UNL, MTA, LAG, SDC (selected device)

Examples errorcode = Clear(ieee); Sends the Device Clear (DCL) command to the
IEEE interface board.

errorcode = Clear(wave); Sends the Selected Device Clear (SDC) command
to the WAVE device.

errorcode = Clear(dmm); Sends the Selected Device Clear (SDC) command
to the DMM device.

See Also Reset, ClearList

The Clear command causes the Device Clear (DCL) bus command to be issued to an interface or a
Selected Device Clear (SDC) command to be issued to an external device. IEEE 488 bus devices that
receive a Device Clear or Selected Device Clear command normally reset to their power-on state.

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 API Reference 6-7

ClearList
Syntax INT WINAPI ClearList(DevHandlePT devHandleList);

devHandleList is a pointer to a list of device handles that refer to external devices. If a
hardware interface is in the list, DCL is sent instead of SDC.

Returns -1 if error

Bus States ATN•DCL (all devices)

ATN•UNL, MTA, LAG, SDC (selected device)

Example deviceList[0] = wave;
deviceList[1] = scope;
deviceList[2] = dmm;
deviceList[3] = NODEVICE;
errorcode =
ClearList(deviceList);

Sends the Selected Device Clear
(SDC) command to a list of
devices.

See Also Clear, Reset

The ClearList command causes the Selected Device Clear (SDC) command to be issued to a list of
external devices. IEEE 488 bus devices that receive a Selected Device Clear command normally reset to
their power-on state.

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 API Reference 6-8

Close
Syntax INT WINAPI Close(DevHandleT devHandle);

devHandle refers to either an IEEE 488 interface or an external device.

Returns -1 if error

Bus States Completion of any pending I/O activities

Example errorcode = Close(wave);

See Also OpenName, MakeDevice, Wait

The Close command waits for I/O to complete, flushes any buffers associated with the device that is being
closed, and then invalidates the handle associated with the device.

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 API Reference 6-9

ControlLine
Syntax INT WINAPI ControlLine(DevHandleT devHandle);

ControlLine returns a bit mapped number.

devHandle refers to the I/O adapter. If devHandle refers to an external device, the
ControlLine command acts on the hardware interface to which the external device
is attached.

Response -1 if error

otherwise, a bit map of the current state of the IEEE 488 interface. Under 32-bit Driver488
software, serial interfaces are no longer supported.

Bus States None

Example result = ControlLine(ieee);

printf(“The response is %X\n”,result);

See Also TimeOut

The ControlLine command may be used only on IEEE 488 devices. Under 32-bit Driver488 software,
serial interfaces are no longer supported. This command returns the status of the IEEE 488 bus control
lines as an 8-bit unsigned value (bits 2 and 1 are reserved for future use), as indicated below.

Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1

EOI SRQ NRFD NDAC DAV ATN 0 0

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 API Reference 6-10

DigArm
AT488pnp and PCI488 Only !
Syntax INT WINAPI DigArm(DevHandleT devHandle, BOOL bArm);

devHandle refers to an interface handle.

bArm refers to a value that arms or disarms event generation. TRUE = Arm, FALSE =
Disarm.

Returns -1 if neither nibble is set for input, or other error

Bus States None

Example DigArm(devHandle, TRUE); Arms digital input event generation.

See Also DigArmSetup, DigSetup, OnDigEvent, OnDigEventVDM

The DigArm command arms or disarms the event-generation due to a digital I/O port match condition. The
caller should configure the digital I/O port, the event-callback mechanism, and the match condition prior to
arming the event generation. The following code snippet illustrates this sequence:

DigSetup(devHandle, FALSE, FALSE); // Configure both nibbles for input.
OnDigEventVDM(devHandle, MyFunc, 0); // On event, call function MyFunc.
DigArmSetup(devHandle, 0x0A5); // Trigger when inputs equals 0xA5.
DigArm(devHandle, TRUE); // Enable event generation.

Event generation is automatically disarmed when an event is triggered. The event generation
configuration, however, remains intact, so event generation can be re-armed just by calling DigArm. The
other steps shown in the above code snippet do not need to be repeated unless the event configuration is to
be changed.

Event generation may be disarmed (bArm = FALSE) at any time.

Notes:

(1) This function does not configure the digital I/O port for input. The caller must use DigSetup
to configure the port for input before performing arming event generation. If neither nibble is
configured for input the function returns -1 and sets the error code to IOT_BAD_VALUE2.

(2) Event generation may be re-armed from within the event handler to provide continuous
detection of match condition events. However, this is not guaranteed to catch every event if
the digital input values are rapidly changing.

(3) Any digital I/O port bits configured for output are treated as “don’t care” bits for the purposes
of event generation. In other words, it is valid to arm an event when only one nibble of the
port is configured for input. In this case, the other nibble is ignored when detecting the match
condition.

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 API Reference 6-11

DigArmSetup
AT488pnp and PCI488 Only !
Syntax INT WINAPI DigArmSetup(DevHandleT devHandle, BYTE

byMatchValue);

devHandle refers to an interface handle.

byMatchValue refers to a value that is compared against the digital I/O inputs

Returns -1 if error

Bus States None

Example DigArmSetup(devHandle, 0xA5); Sets the match value to 0xA5.

See Also DigArm, DigSetup

The DigArmSetup command sets the match condition value. This value will be compared against the
digital I/O port inputs to detect when an event occurs. The event must be armed (via DigArm) for event
notification to take place.

The comparison operation depends on the current digital port configuration. If both nibbles are configured
for input, then the match value is compared to the entire byte value of the digital port. If only one of the
nibbles is configured for input, then the value is compared against just that nibble. If no nibbles are
configured for input, then the match value is ignored. The DigArm function will not allow event generation
to be armed unless at least one of the nibbles is configured for input.

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 API Reference 6-12

DigRead
AT488pnp and PCI488 Only !
Syntax INT WINAPI DigRead(DevHandleT devHandle);

devHandle refers to an interface handle.

Returns -1 if no part of the port is configured for input, or other error

otherwise, integer between 0 and 255 if the entire digital I/O port is configured for input; or
integer between 0 and 15 if only one nibble (either low or high) is configured for input

Bus States None

Example int i = DigRead(devHandle); Returns the current value of the digital I/O
port per the current configuration.

See Also DigSetup, DigWrite

The DigRead command reads the current value of the digital IO port per the input/output configuration of
the port. If the entire port is configured for input, a value between 0 and 255 is returned. If either the
upper or lower nibble is configured for input, and the other for output, a value between 0 and 15 is
returned.

Note: This function does not configure the digital I/O port for input. The caller must use DigSetup
to configure the port for input before performing any reads. If neither nibble is configured for
input the function returns -1 and sets the error code to IOT_BAD_VALUE2.

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 API Reference 6-13

DigSetup
AT488pnp and PCI488 Only !
Syntax INT WINAPI DigSetup(DevHandleT devHandle, BOOL bLowOut, BOOL

bHighOut);

devHandle refers to an interface handle.

bLowOut refers to the lower nibble setup. TRUE = output, FALSE = input.

bHighOut refers to the upper nibble setup. TRUE = output, FALSE = input.

Returns -1 if error

Bus States None

Examples DigSetup(devHandle, TRUE , TRUE); All 8 bits output.

DigSetup(devHandle, FALSE, TRUE); Lower 4 bits input, upper 4 output.

DigSetup(devHandle, TRUE , FALSE); Lower 4 bits output, upper 4 input.

DigSetup(devHandle, FALSE, FALSE); All 8 bits input.

See Also DigRead, DigWrite

The DigSetup command configures the digital I/O port for input and output on a per-nibble basis. Each of
the two nibbles can be set for input or output. All combinations are supported. Once DigSetup is called,
the configuration of the digital I/O port does not change until the next call to DigSetup. The port may be
read and written many times without affecting the port setup.

Note: The digital I/O port must be configured every time the driver is opened. The configuration is
not stored between sessions.

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 API Reference 6-14

DigWrite
AT488pnp and PCI488 Only !
Syntax INT WINAPI DigWrite(DevHandleT devHandle, BYTE byDigData);

devHandle refers to an interface handle.

byDigData refers to a value to write to the digital output port, where the integer range is
between 0 and 255 if the entire digital I/O port is configured for output, or between 0
and 15 if only one nibble (either low or high) is configured for output.

Returns -1 if no part of the digital I/O port is configured for output.

Bus States None

Example DigRead(devHandle, 0x0A); Writes the given value to the digital I/O port per
the current configuration.

See Also DigSetup, DigRead

The DigWrite command writes the given value to the digital I/O port per the input/output configuration of
the port. If the entire port is configured for output, then the data value with a range from 0 to 255 is written
to the port. If either the upper or lower nibble is configured for input, and the other for output, then the data
value is truncated to the range from 0 to 15 and it is written to the appropriate nibble per the current
configuration.

Notes:

(1) This function does not configure the digital I/O port for output. The caller must use
DigSetup to configure the port before performing any reads or writes. If neither nibble is
configured for output the function returns -1 and sets the error code to IOT_BAD_VALUE2.

(2) Outputs do not persist after an interface is closed. At that time, all digital I/O lines are
configured for input.

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 API Reference 6-15

Disarm
Syntax INT WINAPI Disarm(DevHandleT devHandle, ArmCondT condition);

devHandle refers to either an IEEE 488 interface or an external device. If devHandle
refers to an external device, then the Disarm command acts on the hardware interface
to which the external device is attached.

condition specifies which of the conditions are no longer to be monitored. If condition is
0, then all conditions are Disarmed.

Returns -1 if error

otherwise, the current bit map of the event condition mask.

Bus States None

Examples errorcode=Disarm(ieee,acTalk|acListen|acChange);

errorcode=Disarm(ieee,0);

See Also Arm, OnEvent

The Disarm command prevents Driver488 from invoking an event handler and interrupting the PC, even
when the specified condition occurs. Your program can still check for the condition by using the Status
command. If the Disarm command is invoked without specifying any conditions, then all conditions are
disabled. The Arm command may be used to re-enable interrupt detection.

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 API Reference 6-16

EnterX
Syntax LONG WINAPI EnterX(DevHandleT devHandle, LPBYTE data,DWORD

count,BOOL forceAddr,TermT*term,BOOL reserved,LPDWORD
compStat);

devHandle refers to either an IEEE 488 interface or an external device.

data is a pointer to the buffer into which the data is read.

count is the number of characters to read.

forceAddr is used to specify whether the addressing control bytes are to be issued for
each EnterX command.

term is a pointer to a terminator structure that is used to set up the input terminators.
If term is set to 0, the default terminator is used.

reserved - this value is ignored.

compStat is a pointer to an integer containing completion status information.

Returns -1 if error

otherwise, the actual count of bytes transferred. The memory buffer pointed to by the data
parameter is filled in with the information read from the device. Note that the actual
count does not include terminating characters if term characters are specified by the
term in function. In addition, term characters are not returned but are discarded.

Bus States With interface handle: *ATN, data

With external device handle: ATN•UNL, MLA, TAG, *ATN, data
Example term.EOI = TRUE;

term.nChar = 1;
term.EightBits = TRUE;
term.termChar[0] = ‘\r’;
bytecount=EnterX(timer,data,1024,0,&term,1,&stat);

See Also OutputX, Term, Buffered

The EnterX command reads data from the I/O adapter. If an external device is specified, then Driver488 is
addressed to Listen, and that device is addressed to Talk. If an interface is specified, then Driver488 must
already be configured to receive data and the external device must be configured to Talk, either as a result
of an immediately preceding EnterX command or as a result of one of the Send commands. EnterX
terminates reception on either the specified count of bytes transferred, or the specified or default terminator
being detected. Terminator characters, if any, are stripped from the received data before the EnterX
command returns to the calling application.

The forceAddr flag is used to specify whether the addressing control bytes are to be issued for each
EnterX command. If the device handle refers to an I/O adapter, then forceAddr has no effect and
command bytes are not sent. For an external device, if forceAddr is TRUE then Driver488 always sends
the UNL, MLA, and TAG command bytes. If forceAddr is FALSE, then Driver488 compares the current
device with the previous device that used that interface adapter board for an EnterX command. If they are
the same, then no command bytes are sent. If they are different, then EnterX acts as if the forceAddr
flag were TRUE and sends the command bytes. The forceAddr flag is usually set TRUE for the first
transfer of data from a device, and then set FALSE for additional transfers from the same block of data from
that device.

Additional Enter Functions
Driver488 provides additional Enter routines that are short-form versions of the EnterX function. The
following Enter functions are already defined in your header file.

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 API Reference 6-17

Enter
Syntax LONG WINAPI Enter(DevHandleT devHandle, LPBYTE data)

Remarks Enter is equivalent to the following call to EnterX:

EnterX(devHandle,data,sizeof(data),1,0L,0,0L);

The Enter function passes the device handle and a pointer to the data buffer to the EnterX function. It
determines the size of the data buffer that you provided, and passes that value as the count parameter. It
specifies forceAddr is TRUE, causing Driver488 to re-address the device. The default terminators are
chosen by specifying a 0 as the term parameter. Asynchronous transfer is turned off by sending 0 for the
async parameter, and the completion status value is ignored by sending 0 for the compStat parameter.

EnterN
Syntax LONG WINAPI EnterN(DevHandleT devHandle,LPBYTE data,int

count)

Remarks EnterN is equivalent to the following call to EnterX:

EnterX(devHandle,data,count,1,0L,0,0L);

The EnterN function passes the device handle, the pointer to the data buffer, and the size of the data buffer
to the EnterX function. It specifies forceAddr is TRUE, causing Driver488 to re-address the device. The
default terminators are chosen by specifying a 0 pointer as the term parameter. Asynchronous transfer is
turned off by sending 0 for the async parameter, and the completion status value is ignored by sending 0
for the compStat parameter.

EnterMore
Syntax LONG WINAPI EnterMore(DevHandleT devHandle,LPBYTE data)

Remarks EnterMore is equivalent to the following call to EnterX:

EnterX(devHandle,data,sizeof(data),0,0L,0,0L);

The EnterMore function passes the device handle and the pointer to the data buffer to the EnterX
function. It determines the size of the data buffer that you provided, and passes that value as the count
parameter. It specifies forceAddr is FALSE, therefore Driver488 does not address the device if it is the
same device as previously used. The default terminators are chosen by specifying a 0 as the term
parameter. Asynchronous transfer is turned off by sending 0 for the async parameter, and the completion
status value is ignored by sending 0 for the compStat parameter.

EnterNMore
Syntax LONG WINAPI EnterNMore(DevHandleT devHandle,LPBYTE data,int

count);

Remarks EnterNMore is equivalent to the following call to EnterX:

EnterX(devHandle,data,count,0,0L,0,0L);

The EnterNMore function passes the device handle, the pointer to the data buffer, and the size of the data
buffer to the EnterX function. It specifies forceAddr is FALSE; therefore, Driver488 does not address the
device if it is the same device as previously used. The default terminators are chosen by specifying a 0 as
the term parameter. Asynchronous transfer is turned off by sending 0 for the async parameter, and the
completion status value is ignored by sending 0 for the compStat parameter.

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 API Reference 6-18

Error
Syntax INT WINAPI Error(DevHandleT devHandle, BOOL display);

devHandle refers to either an IEEE 488 interface or an external device.

display indicates whether the error message display should be ON or OFF.

Returns -1 if error

Bus States None

Example errorcode = Error(ieee, OFF);

See Also OnEvent, GetError, GetErrorList, Status

The Error command enables or disables automatic on-screen display of Driver488 error messages.
Specifying ON enables the error message display, while specifying OFF disables the error message display.
Error ON is the default condition.

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 API Reference 6-19

FindListeners
Syntax INT WINAPI FindListeners(DevHandleT devHandle, BYTE primary,

LPWORD listener, DWORD limit);

devHandle refers to either an IEEE 488 interface or an external device. If devHandle
refers to an external device, then the FindListeners command acts on the
hardware interface to which the external device is attached.

primary is the primary IEEE 488 bus address to check.

listener is a pointer to a list that contains all Listeners found on the specified interface
board. You must allocate enough memory to accommodate all of the possible Listeners
up to the limit that he specified.

limit is the maximum number of Listeners to be entered into the Listener list.

Returns -1 if error

otherwise, the number of Listeners found on the interface

Bus States ATN•MTA, UNL, LAG
Example WORD listeners[5];

errorcode = FindListeners(ieee,10,listeners,5);

See Also CheckListener, BusAddress, Status

The FindListeners command finds all of the devices configured to Listen at the specified primary
address on the IEEE 488 bus. The command first identifies the primary address to check and returns the
number of Listeners found and their addresses. Then, it fills the user-supplied array with the addresses of
the Listeners found. The number of Listeners found is the value returned by the function. The returned
values include the secondary address in the upper byte, and the primary address in the lower byte. If there
is no secondary address, then the upper byte is set to 255; hence, a device with only a primary address of
16 and no secondary address is represented as 0xFF10 or -240 decimal.

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 API Reference 6-20

GetError
Syntax ErrorCodeT WINAPI GetError(DevHandleT devHandle, LPSTR

errText);

devHandle refers to either the IEEE 488 interface or the external device that has the
associated error.

errText is the string that will contain the error message. If errText is non-null, the
string must contain at least 247 bytes.

Returns -1 if error

otherwise, it returns the error code number associated with the error for the specified device.

Bus States None

Example errnum = GetError(ieee,errText);

printf(“Error number:%d;%s \n”errnum,errText);

See Also Error, GetErrorList, Status

The GetError command is user-called after another function returns an error indication. The device
handle sent to the function that returned the error indication is sent to GetError as its devHandle
parameter. GetError finds the error associated with that device and returns the error code associated with
that error. If a non-null error text pointer is passed, GetError also fills in up to 247 bytes in the string.
The application must ensure that sufficient space is available.

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 API Reference 6-21

GetErrorList
Syntax ErrorCodeT WINAPI GetErrorList(DevHandlePT devHandleList,

LPSTR errText, DevHandlePT errHandle);

DevHandleList is a pointer to a list of external devices that was returned from a function,
due to an error associated with one of the external devices in the list.

errText is the text string that contains the error message. You must ensure that the string
length is at least 247 bytes.

errHandle is a pointer to the device handle that caused the error.

Returns -1 if error

otherwise, it returns the error number associated with the given list of devices.

Bus States None

Example char errText[329];
int errHandle;
int errnum;
result = ClearList(list);
if (result == -1) {
 errnum=GetErrorList(list,errText,&errHandle);
 printf(“Error %d;%s,at handle %d\n”, errnum, errText,
 errHandle);
}

See Also Error, GetError, Status

The GetErrorList command is user-called, after another function identifying a list of device handles,
returns an error indication. The device handle list sent to the function that returned the error indication, is
sent to GetErrorList. GetErrorList finds the device that returned the error indication, returning the
handle through errHandle, and returns the error code associated with that error. If a non-null error text
pointer is passed, GetError also fills in up to 247 bytes in the string. The application must ensure that
sufficient space is available.

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 API Reference 6-22

Hello
Syntax INT WINAPI Hello(DevHandleT devHandle, LPSTR message);

devHandle refers to either an IEEE 488 interface or an external device. If devHandle
refers to an external device, the Hello command acts on the hardware interface to
which the external device is attached.

message is a character pointer that contains the returned message, which is the version of
the Dynamic Link Library (DLL) and the version of the device driver.

Returns -1 if error

otherwise, the length in bytes of the message string. The returned byte count will never
exceed 247 bytes.

Bus States None

Example char message[247];
result = Hello(ieee,message);
printf(“%s\n”,message);

See Also Status, OpenName, GetError

The Hello command is used to verify communication with Driver488, and to read the software revision
number. If a non-null string pointer is passed, Hello fills in up to 247 bytes in the string. The application
must ensure that sufficient space is available. When the command is sent, Driver488 returns a string
similar to the following:

Driver488 Revision X.X (C)199X ...

where X is the appropriate revision or year number.

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 API Reference 6-23

KeepDevice
Syntax INT WINAPI KeepDevice(DevHandleT devHandle);

devHandle refers to an external device.

Returns -1 if error

Bus States None

Example errorcode = KeepDevice(scope);

See Also MakeDevice, MakeNewDevice, RemoveDevice, OpenName

Note: KeepDevice will update an existing device or will create a new device in the Registry. This
update feature is new and useful. For example, if you wish to change the bus address of the
device and make it a permanent change.

The KeepDevice command changes the indicated temporary Driver488 device to a permanent device,
visible to all applications. Permanent Driver488 devices are not removed when Driver488 is closed.
Driver488 devices are created by MakeDevice and are initially temporary. Unless KeepDevice is used,
all temporary Driver488 devices are forgotten when Driver488 is closed. The only way to remove the
permanent device once it has been made permanent by the KeepDevice command, is to use the
RemoveDevice command.

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 API Reference 6-24

Listen
Syntax INT WINAPI Listen(DevHandleT devHandle, BYTE primary,

BYTE secondary);

devHandle refers to either an IEEE 488 interface or an external device. If devHandle
refers to an external device, the Listen command acts on the associated interface.

primary and secondary specify the primary and secondary addresses of the device
which is to be addressed to listen.

Returns -1 if error

Bus States ATN, LAG

Example errorcode = Listen (ieee, 12, -1);

See Also Talk, SendCmd, SendData, SendEoi, FindListener

The Listen command addresses an external device to Listen.

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 API Reference 6-25

Local
Syntax INT WINAPI Local(DevHandleT devHandle);

devHandle refers to either an IEEE 488 interface or an external device.

Returns -1 if error

Bus States *REN

Examples errorcode = Local(ieee); To unassert the Remote Enable (REN) line, the
IEEE 488 interface is specified.

errorcode = Local(wave); To send the Go To Local (GTL) command, an
external device is specified.

See Also LocalList, Remote, AutoRemote

In the System Controller mode, the Local command issued to an interface device, causes Driver488 to
unassert the Remote Enable (REN) line. This causes devices on the bus to return to manual operation. A
Local command addressed to an external device, places the device in the local mode via the Go To Local
(GTL) bus command.

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 API Reference 6-26

LocalList
Syntax INT WINAPI LocalList(DevHandlePT devHandleList);

devHandleList refers to a pointer to a list of external devices.

Returns -1 if error

Bus States ATN•UNL, MTA, LAG,GTL
Example deviceList[0] = wave;

deviceList[1] = timer;
deviceList[2] = dmm;
deviceList[3] = NODEVICE;
errorcode = LocalList(deviceList);

Sends the Go To Local (GTO) bus
command to a list of external
devices.

See Also Local, Remote, RemoteList, AutoRemote

In the System Controller mode, the LocalList command issued to an interface device, causes Driver488
to unassert the Remote Enable (REN) line. This causes devices on the bus to return to manual operation.
A LocalList command addressed to an external device, places the device in the local mode via the
Go To Local (GTL) bus command.

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 API Reference 6-27

Lol
Syntax INT WINAPI Lol(DevHandleT devHandle);

devHandle refers to either an IEEE 488 interface or an external device. If devHandle
refers to an external device, the Lol command acts on the hardware interface to which
the external device is attached.

Returns -1 if error

Bus States ATN•LLO
Example errorcode = Lol(ieee);

See Also Local, LocalList, Remote, RemoteList

The Lol command causes Driver488 to issue an IEEE 488 LocalLockout (LLO) bus command. Bus
devices that support this command are thereby inhibited from being controlled manually from their
front panels.

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 API Reference 6-28

MakeDevice
Syntax INT WINAPI MakeDevice(DevHandleT devHandle, LPSTR name);

devHandle refers to an existing external device.

name is the device name of the device that is to be made and takes the configuration of the
device given by devHandle.

Returns -1 if error

otherwise, the DevHandleT of the new device. Note that the new device is an exact copy
(except for the name) of the specified device as it currently sets in memory and not in
the Registry.

Bus State None

Example dmm = MakeDevice(scope,"DMM");

BusAddress(dmm,16,-1);

Create a device named DMM, attached to
the same I/O adapter as scope and
set its IEEE 488 bus address to 16.

See Also MakeNewDevice, KeepDevice, RemoveDevice, OpenName, Close

The MakeDevice command creates a new temporary Driver488 device that is an identical copy of an
already existing Driver488 external device. The new device is attached to the same I/O adapter of the
existing device and has the same bus address, terminators, timeouts, and other characteristics. The newly
created device is temporary and is removed when Driver488 is closed. KeepDevice may be used to make
the device permanent. To change the default values assigned to the device, it is necessary to call the
appropriate configuration functions such as BusAddress, IOAddress, and TimeOut.

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 API Reference 6-29

MakeNewDevice
Syntax DevHandleT WINAPI MakeNewDevice(LPSTR iName, LPSTR aName,BYTE

primary,BYTE secondary,TermPT In,TermPT Out,DWORD
timeout);

devHandle refers to the new external device.

iName is the user name of the interface on which the device is to be created.

aName is the user name of the device.

primary and secondary are the secondary and primary bus addresses to be specified.
For no secondary address, a -1 must be specified.

In and Out are pointers to terminator structures specified to set up the respective input and
output terminators of the device.

tOut is the timeout parameter to be specified.

Returns -1 if error

otherwise, the DevHandleT of the new device, based on the parameters specified.

Bus State None

Example DevHandleT anotherDevice;

anotherDevice =
MakeNewDevice(“IEEE0”,
“Scope”,13,-1,NULL,
NULL,10000);

Specifies parameters for: Pointer to the interface,
pointer to the device name, primary and
secondary addresses, pointers to the term
In and Out structures, and timeout in
milliseconds.

See Also MakeDevice, KeepDevice, RemoveDevice, OpenName, Close

This is a new function in Driver488/W95 and in Driver488/WNT. This function is similar to the
MakeDevice function except that MakeNewDevice will create a new device based on the parameters
specified, instead of simply cloning an existing device.

The MakeNewDevice command does not save the parameters of the newly created device in the system
registry. To keep the device, it is necessary to call the KeepDevice function.

Note: The MakeNewDevice command will only create, not save, a new device. Interface
descriptions are created and maintained by the configuration utility and the IEEE 488
configuration applet in the Windows Control Panel.

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 API Reference 6-30

MyListenAddr
Syntax INT WINAPI MyListenAddr (DevHandleT devHandle);

devHandle refers to either an interface or an external device. If devHandle refers to an
external device, the MyListenAddr command acts on the associated interface.

Returns -1 if error

Bus States ATN, MLA

Example errorcode = MyListenAddr (ieee);

See Also MyTalkAddr, Talk, Listen, SendCmd

The MyListenAddr command addresses the interface to Listen.

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 API Reference 6-31

MyTalkAddr
Syntax INT WINAPI MyTalkAddr (DevHandleT devHandle);

devHandle refers to either an interface or an external device. If devHandle refers to an
external device, the MyTalkAddr command acts on the associated interface.

Returns -1 if error

Bus States ATN, MTA

Example errorcode = MyTalkAddr (ieee);

See Also MyListenAddr, Listen, SendCmd

The MyTalkAddr command addresses the interface to Talk.

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 API Reference 6-32

OnDigEvent
AT488pnp and PCI488 Only ! Windows9x Only !
Syntax INT WINAPI OnDigEvent(DevHandleT devHandle, HWND hwnd,

OpaqueP lParam);

devHandle refers to an interface handle.

hwnd is the window handle to receive event notification.

lParam value will be passed in the notification message.

Returns -1 if error

Bus States None

Example OnDigEvent(devHandle,
TRUE, 0x10L);

Sets the event notification to be via a window message
to the specified window handle. The value 0x10
will be passed with the message.

See Also DigArm, OnDigEventVDM, OnEvent

The OnDigEvent command sets the handle of a window to receive a notification message when a digital
match event is triggered. This function uses the same mechanism as the OnEvent command. For details,
see the description of OnEvent.

Note: This function sets the event generation mechanism to be a window notification message,
replacing any previously defined event notification mechanism. Only one event notification
mechanism can be used at one time.

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 API Reference 6-33

OnDigEventVDM
AT488pnp and PCI488 Only ! Windows9x Only !
Syntax INT WINAPI OnDigEventVDM(DevHandleT devHandle, DigEventFuncT

func, OpaqueP lParam);

devHandle refers to an interface handle.

func is a user-defined function to be called when the digital match event is triggered.

lParam value will be passed in the notification message.

Returns -1 if error

Bus States None

Example OnDigEventVDM(devHandle,
MyFunc, 0x10L);

Sets the event notification to be via a function call to
the specified callback function. The value
0x10 will be passed to the function.

See Also DigArm, OnDigEventVDM, OnEventVDM

The OnDigEventVDM command sets the address of a “C”-style (__stdcall) function to be called when a
digital match event occurs. This function uses a similar mechanism as the OnEventVDM command. The
prototype of the callback function for OnDigEventVDM is:

void DigEventFunc(DevHandleT devHandle, LPARAM lParam)

The lParam value that is passed to OnDigEventVDM is passed on to the callback function when the event
occurs. For details, see the description of OnEventVDM.

Note: This function sets the event generation mechanism to be a callback function, replacing any
previously defined event notification mechanism. Only one event notification mechanism
can be used at one time.

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 API Reference 6-34

OnEvent
Windows9x and Windows2000 Only !
Syntax INT WINAPI OnEvent(DevHandleT devHandle, HWND hWnd, OpaqueP

lParam);

devHandle refers to either an interface or an external device.

hWnd is the window handle to receive the event notification.

lParam value will be passed in the notification message.

Returns -1 if error

Bus States None

Example ieee = OpenName (“ieee”);
OnEvent (ieee, hWnd, (OpaqueP) 12345678L);
Arm (ieee, acSRQ | acError);
break;

See Also OnEventVDM, Arm, Disarm

The OnEvent command causes the event handling mechanism to issue a message upon occurrence of an
Armed event.
The message will have a type of WM_IEEE488EVENT, whose value is retrieved via:

RegisterWindowMessage ((LPSTR) “WM_IEEE488EVENT”);

The associated wParam is an event mask indicating which Armed event(s) caused the notification, and the
lParam is the value passed to OnEvent. Note that although there is a macro for WM_IEEE488EVENT in the
header file for each language, this macro resolves to a function call and therefore cannot be used as a case
label. The preferred implementation is to include a default case in the message handling case statement and
directly compare the message ID with WM_IEEE488EVENT.
The following is an example of an event handler.

LONG FAR WINAPI export
WndProc(HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam);
{
HANDLE
ieee;
switch (iMessage)

{
case WM_CREATE:

ieee = OpenName (“ieee”);
OnEvent (ieee, hWnd, (OpaqueP) 12345678L);
Arm (ieee, acSRQ | acError);
break;

default:
if (iMessage == WM_IEEE488EVENT) {

char buff [80];
wsprintf (buff, “Condition = %04X, Param = %081X”,wParam, lParam);
MessageBox (hWnd, (LPSTR) buff, (LPSTR) “Event Noted”, MB OK);
return TRUE;

}
}

}

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 API Reference 6-35

OnEventVDM
Windows9x and Windows2000 Only !
Syntax INT WINAPI OnEventVDM(DevHandleT devHandle, EventFuncT func);

devHandle refers to either an interface or an external device.

func is a user-specified interrupt-handler function that is to perform some user-defined
function, when one of the Armed conditions occur.

Returns -1 if error

Bus States None

Example Arm(ieee0, acSRQ);

OnEventVDM(ieee0, srqHandler);

Arms SRQ detection and sets up SRQ
function handler

See Also OnEvent, Arm, Disarm

This function is new in Driver488/W95. The OnEventVDM allows a call back to a user-specified function
in an application. The following is a full example of a console mode program using the OnEventVDM
function:

#include <windows.h>
#include <stdio.h>
#include “iotieee.h”
// For debugging
#define qsk(v,x) (v=x, printf(#x “returned %d\n”, v))
void srqHandler(DevHandleT devHandle, UINT mask)
{

LONG xfered;
printf(“\007\n\nEVENT-FUNCTION on %d mask 0x%04x\n”, devHandle, mask);
qsk(xfered, Spoll(devHandle));
printf(“\n\n”);

}
void main(void)
{

LONG result, xfered;
int ioStatus, x;
DevHandleT ieee0, wave14, wave16;
TermT myTerm;
UCHAR buffer[500];
printf(“\n\nSRQTEST program PID %d\n”,GetCurrentProcessId ());
qsk(ieee0, OpenName(“ieee0”));
qsk(wave14, OpenName(“Wave14”));
qsk(wave16, OpenName(“Wave16”));
qsk(result, Abort(wave14));
qsk(result, Abort(wave16));
qsk(x, Hello(ieee0, buffer));
printf(“\n%s\n\n”, buffer);
myTerm.EOI = 1;
myTerm.nChar = 0;
myTerm.termChar[0] = ‘\r’;
myTerm.termChar[1] = ‘\n’;
// Arm SRQ detection and set up SRQ function handler
qsk(x, Arm(ieee0, acSRQ));
qsk(x, OnEventVDM(ieee0, srqHandler));
// Tell the Wave to assert SRQ in 3 seconds
qsk(xfered,Output(wave16,“t3000x”,6L,1,0,&myTerm,0,&ioStatus));
printf(“Completion code: 0x%04x\n”, ioStatus);
// Normally, your program would be off doing other work, for
// this example we will just hold here for a short time.
For(result = 0; result 30000; result++) {

printf(“Result is %06d\r”, result);

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 API Reference 6-36

}

printf(“\n\n”);
qsk(xfered, Spoll(wave16));
qsk(x, Close(wave14));
qsk(x, Close(wave16));
qsk(x, Close(ieee0));

}

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 API Reference 6-37

OpenName
Syntax DevHandleT WINAPI OpenName(LPSTR name);

name is the name of an interface or external device.

Returns -1 if error

otherwise, the device handle associated with the given name

Bus State None

Examples dmm = OpenName(“DMM”); Opens the external device DMM

dmm = OpenName(“IEEE:DMM”); Specifies the interface to which the external
device is connected

See Also MakeDevice, Close

The OpenName command opens the specified interface or external device and returns a device handle for
use in accessing that device.

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 API Reference 6-38

OutputX
Syntax LONG WINAPI OutputX(DevHandleT devHandle, LPBYTE data, DWORD

count, BOOL last, BOOL forceAddr, TermT *term,
BOOL reserved, LPDWORD compStat);

devHandle refers to either an interface or an external device. If devHandle refers to an
external device, the OutputX command acts on the hardware interface to which the
external device is attached.

data is a string of bytes to send.

count is the number of bytes to send.

last is a flag that forces the device output terminator to be sent with the data.

forceAddr is used to specify whether the addressing control bytes are to be issued for
each OutputX command.

term is a pointer to a terminator structure that is used to set up the input terminators.
If term is set to 0, the default terminator is used.

reserved - this value is ignored.

compStat is a pointer to an integer containing completion status information.

Returns -1 if error

otherwise, the number of characters transferred

Bus States With interface handle: REN (if SC and AutoRemote), *ATN, ATN

With external device handle: REN (if SC and AutoRemote), ATN•MTA, UNL,
LAG, *ATN, ATN

Example term.EOI = TRUE;
term.nChar = 1;
term.EightBits = TRUE;
term.termChar[0] = ‘\r’;
data = “U0X”;
count = strlen(data);
bytecnt=Output(timer,data,count,1,0,&term,0,&stat);

See Also EnterX, Term, TimeOut, Buffered

The OutputX command sends data to an interface or external device. The Remote Enable (REN) line is
first asserted if Driver488 is the System Controller and AutoRemote is enabled. Then, if a device address
(with optional secondary address) is specified, Driver488 is addressed to Talk and the specified device is
addressed to Listen. If no address is specified, then Driver488 must already be configured to send data,
either as a result of a preceding OutputX command, or as the result of a Send command. Terminators are
automatically appended to the output data as specified.

The forceAddr flag is used to specify whether the addressing control bytes are to be issued for each
OutputX command. If the device handle refers to an interface, forceAddr has no effect and command
bytes are not sent. If the device handle refers to an external device and forceAddr is TRUE, Driver488
addresses the interface to Talk and the external device to Listen. If forceAddr is FALSE, Driver488
compares the current device with the most recently addressed device on that interface. If the addressing
information is the same, no command bytes are sent. If they are different, OutputX acts as if the
forceAddr flag were TRUE and sends the addressing information.

term is a pointer to a terminator structure that is used to set up the input terminators. This pointer may be a
null pointer, requesting use of the default terminators for the device, or it may point to a terminator
structure requesting no terminators.

The compStat is a pointer to an integer containing completion status information. A null pointer indicates
that completion status is not requested.

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 API Reference 6-39

Additional Output Functions
Driver488 provides additional Output functions that are short-form versions of the OutputX function.
The following Output functions are already defined in your header file.

Output
Syntax LONG WINAPI Output(DevHandleT devHandle,LPBYTE data);

Remarks Output is equivalent to the following call to OutputX:

OutputX(devHandle,data,strlen(data),1,1,0L,0,0L);

The Output function passes the device handle and data buffer to the OutputX function. It determines the
size of the data buffer that you provided, and passes that value as the count parameter. It specifies that the
forceAddr flag is set TRUE, which causes Driver488 to address the device if an external device is
specified. The default terminators are chosen by specifying a 0 pointer as the terminator parameter.
Synchronous transmission is specified by sending 0 for the async parameter, and the completion status
value is ignored by sending a 0 for the compStat pointer.

OutputN
Syntax LONG WINAPI OutputN(DevHandleT devHandle,LPBYTE data,DWORD

count);

Remarks OutputN is equivalent to the following call to OutputX:

OutputX(devHandle,data,count,0,1,0L,0,0L);

The OutputN function passes the device handle and a pointer to the data buffer to the OutputX function.
It specifies that the forceAddr flag is set TRUE, which causes Driver488 to address the device if an
external device is specified. The default terminators are chosen by specifying a 0 pointer as the
terminator parameter. Synchronous transmission is specified by sending 0 for the async parameter, and
the completion status value is ignored by sending a 0 for the compStat pointer.

OutputMore
Syntax LONG WINAPI OutputMore(DevHandleT devHandle, LPBYTE data);

Remarks OutputMore is equivalent to the following call to OutputX:

OutputX(devHandle,data,strlen(data),1,0,0L,0,0L);

The OutputMore function passes the device handle and data buffer to the OutputX function. It
determines the size of the data buffer that you provided, and passes that value as the count parameter. It
specifies that the forceAddr flag is set FALSE, so Driver488 does not re-address the device if it is the
same device as that previously used. The default terminators are chosen by specifying a 0 pointer as the
terminator parameter. Synchronous transmission is specified by sending 0 for the async parameter, and
the completion status value is ignored by sending a 0 pointer for the compStat pointer.

OutputNMore
Syntax LONG WINAPI OutputNMore (DevHandleT devHandle, LPBYTE data,

DWORD count);

Remarks OutputNMore is equivalent to the following call to OutputX:

OutputX(devHandle,data,0,0,0L,0,0L);

The OutputNMore function passes the device handle and a pointer to the data buffer to the OutputX
function. It specifies that the forceAddr flag is set FALSE, so Driver488 does not re-address the device if
it is the same device as that previously used. The default terminators are chosen by specifying a 0 pointer
as the terminator parameter. Synchronous transmission is specified by sending 0 for the async
parameter, and the completion status value is ignored by sending a 0 pointer for the compStat pointer.

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 API Reference 6-40

PPoll
Syntax INT WINAPI PPoll(DevHandleT devHandle);

devHandle refers to either an interface or an external device. If devHandle refers to an
external device, then the PPoll command acts on the hardware interface to which the
external device is attached.

Returns -1 if error

otherwise, a number in the range 0 to 255

Bus States ATN•EOI, *EOI
Example errorcode = PPoll(ieee);

See Also PPollConfig, PPollUnconfig, PPollDisable, SPoll

The PPoll (Parallel Poll) command is used to request status information from many bus devices
simultaneously. If a device requires service then it responds to a Parallel Poll by asserting one of the eight
IEEE 488 bus data lines (DIO1 through DIO8, with DIO1 being the least significant). In this manner, up to
eight devices may simultaneously be polled by the controller. More than one device can share any
particular DIO line. In this case, it is necessary to perform further Serial Polling (SPoll) to determine
which device actually requires service.

Parallel Polling is often used upon detection of a Service Request (SRQ), though it may also be performed
periodically by the controller. In either case, PPoll responds with a number from 0 to 255 corresponding
to the eight binary DIO lines. Not every device supports Parallel Polling. Refer to the manufacturer’s
documentation for each bus device to determine if PPoll capabilities are supported.

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 API Reference 6-41

PPollConfig
Syntax INT WINAPI PPollConfig(DevHandleT devHandle,BYTE ppresponse);

devHandle refers to either an interface or an external device to configure for the Parallel
Poll.

ppresponse is the decimal equivalent of the four binary bits S, P2, P1, and P0 where S is
the Sense bit, and P2, P1, and P0 assign the DIO bus data line used for the response.

Returns -1 if error

Bus States ATN•UNL, MTA, LAG, PPC
Example errorcode =

PPollConfig
(dmm,0x0D);

Configure device DMM to assert DIO6 when it desires service
(ist = 1) and it is Parallel Polled (0x0D = &H0D = 1101
binary; S=1, P2=1, P1=0, P0=1; 101 binary = 5 decimal =
DIO6).

See Also PPoll, PPollUnconfig, PPollDisable

The PPollConfig command configures the Parallel Poll response of a specified bus device. Not all
devices support Parallel Polling and, among those that do, not all support the software control of their
Parallel Poll response. Some devices are configured by internal switches.

The Parallel Poll response is set by a four-bit binary number response: S, P2, P1, and P0. The most
significant bit of response is the Sense (S) bit. The Sense bit is used to determine when the device will
assert its Parallel Poll response. Each bus device has an internal individual status (ist). The Parallel Poll
response is asserted when this ist equals the Sense bit value S. The ist is normally a logic 1 when the
device requires attention, so the S bit should normally also be a logic 1. If the S bit is 0, then the device
asserts its Parallel Poll response when its ist is a logic 0. That is, it does not require attention. However,
the meaning of ist can vary between devices, so refer to your IEEE 488 bus device documentation. The
remaining 3 bits of response: P2, P1, and P0, specify which DIO bus data line is asserted by the device in
response to a Parallel Poll. These bits form a binary number with a decimal value from 0 through 7,
specifying data lines DIO1 through DIO8, respectively.

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 API Reference 6-42

PPollDisable
Syntax INT WINAPI PPollDisable(DevHandleT devHandle);

devHandle is either an interface or an external device that is to have its Parallel Poll
response disabled.

Returns -1 if error

Bus States ATN•UNL, MTA, LAG, PPC, PPD
Example errorcode = PPollDisable(dmm); Disables Parallel Poll of device DMM.

See Also PPoll, PPollConfig, PPollUnconfig

The PPollDisable command disables the Parallel Poll response of a selected bus device.

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 API Reference 6-43

PPollDisableList
Syntax INT WINAPI PPollDisableList(DevHandlePT devHandleList);

devHandleList is a pointer to a list of external devices that are to have their Parallel Poll
response disabled.

Returns -1 if error

Bus States ATN•UNL, MTA, LAG, PPC, PPD
Example deviceList[0] = wave;

deviceList[1] = timer;
deviceList[2] = dmm;
deviceList[3] = NODEVICE;
errorcode = PPollDisableList(deviceList);

See Also PPoll, PPollConfig, PPollUnconfig

The PPollDisableList command disables the Parallel Poll response of selected bus devices.

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 API Reference 6-44

PPollUnconfig
Syntax INT WINAPI PPollUnconfig(DevHandleT devHandle);

devHandle refers to a hardware interface. If devHandle refers to an external device,
then the PPollUnconfig command acts on the hardware interface to which the
external device is attached.

Returns -1 if error

Bus States ATN•PPU
Example errorcode = PPollUnconfig(ieee);

See Also PPoll, PPollConfig, PPollDisable

The PPollUnconfig command disables the Parallel Poll response of all bus devices.

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 API Reference 6-45

Remote
Syntax INT WINAPI Remote(DevHandleT devHandle);

devHandle refers to either an interface or an external device. If devHandle refers to an
interface, then the Remote Enable (REN) line is asserted. If devHandle refers to an
external device, then that device is addressed to Listen and placed into the Remote
state.

Returns -1 if error

Bus States With interface: REN

With external device: REN, ATN•UNL, MTA, LAG
Examples errorcode = Remote(ieee); Asserts the REN bus line

errorcode = Remote(scope); Asserts the REN bus line and addresses the
scope device specified to Listen, to place it
in the Remote state

See Also Local, LocalList, RemoteList

The Remote command asserts the Remote Enable (REN) bus management line. If an external device is
specified, then Remote will also address that device to Listen, placing it in the Remote state.

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 API Reference 6-46

RemoteList
Syntax INT WINAPI RemoteList(DevHandlePT devHandleList);

devHandleList is a pointer to a list of devices.

Returns -1 if error

Bus States REN, ATN•UNL, MTA, LAG
Example deviceList[0] = wave;

deviceList[1] = timer;
deviceList[2] = dmm;
deviceList[3] = NODEVICE;
errorcode = RemoteList(deviceList);

Asserts the REN bus line and
addresses a list of specified
devices to Listen, to place these
specified devices in the Remote
state.

See Also Remote, Local, LocalList

The RemoteList command asserts the Remote Enable (REN) bus management line. If external devices are
specified, then RemoteList will also address those devices to Listen, placing them in the Remote state.

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 API Reference 6-47

RemoveDevice
Syntax INT WINAPI RemoveDevice(DevHandleT devHandle);

devHandle specifies an interface or an external device to remove.

Returns -1 if error

Bus States None

Example errorcode = RemoveDevice(dmm);

See Also MakeDevice, KeepDevice

The RemoveDevice command removes the specific temporary or permanent Driver488 device that was
created with either the MakeDevice command or the startup configuration. This command also removes a
device that was made permanent through a KeepDevice command.

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 API Reference 6-48

Reset
Syntax INT WINAPI Reset(DevHandleT devHandle);

devHandle refers to either an interface or an external device. If devHandle refers to an
external device, the Reset command acts on the hardware interface to which the
external device is attached.

Returns -1 if error

Bus States None

Example errorcode=Reset(ieee);

See Also Abort, Term, TimeOut

The Reset command provides a warm start of the interface. Using Reset is equivalent to issuing the
following command process, including clearing all error conditions.

Disarm
Reset hardware (resets to Peripheral if not System Controller)
Abort (if System Controller)
Error ON
Local
Request 0 (if Peripheral)
Clear Change, Trigger, and Clear status
Reset I/O adapter settings to installed values (BusAddress, TimeOut, IntLevel and DmaChannel)

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 API Reference 6-49

SendCmd
Syntax INT WINAPI SendCmd(DevHandleT devHandle, LPBYTE commands,

DWORD count);

DevHandle refers to an interface handle.

Commands points to a string of command bytes to be sent.

count is the length of the command string.

Returns -1 if error

Bus States User-defined

Example char command[] = “U?0";

errorcode = SendCmd(ieee, &command, sizeof command);

See Also SendData, SendEoi

The SendCmd command sends a specified string of bytes with Attention (ATN) asserted, causing the
data to be interpreted as IEEE 488 command bytes.

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 API Reference 6-50

SendData
Syntax INT WINAPI SendData(DevHandleT devHandle, LPBYTE data,

DWORD count);

DevHandle refers to an interface handle.

data points to a string of data bytes to be sent.

count is the length of the data string.

Returns -1 if error

Bus States User-defined

Example char data[] = “W0X”;

errorcode = SendData(ieee, data, strlen (data));

See Also SendCmd, SendEoi

The SendData command provides byte-by-byte control of data transfers and gives greater flexibility than
the other commands. This command can specify exactly which operations Driver488 executes.

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 API Reference 6-51

SendEoi
Syntax INT WINAPI SendEoi(DevHandleT devHandle, LPBYTE data,

DWORD count);

DevHandle refers to an interface handle.

data points to a string of data bytes to be sent.

Count is the length of the data string.

Returns -1 if error

Mode Any

Bus States User-defined

Example char data[] = “W0X”;

errorcode = SendEoi(ieee, data, strlen (data));

See Also SendCmd, SendData

The SendEoi command provides byte-by-byte control of data transfers and gives greater flexibility than
the other commands. This command can specify exactly which operations Driver488 executes. Driver488
asserts EOI during the transfer of the final byte.

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 API Reference 6-52

SPoll
Syntax INT WINAPI SPoll(DevHandleT devHandle);

DevHandle refers to either an interface or a specific external device.

Returns -1 if error

otherwise, 0 or 64 (hardware interface) in the range 0 to 255 (external device)

Bus States ATN•UNL, MLA, UNT, TAG, SPE, *ATN, ATN•SPD, UNT
Examples errorcode = SPoll(ieee); Returns the internal SRQ status

errorcode = SPoll(dmm); Returns the Serial Poll response of the specified
device

See Also SPollList, PPoll

In Active Controller mode, the SPoll (Serial Poll) command performs a Serial Poll of the bus device
specified and responds with a number from 0 to 255 representing the decimal equivalent of the eight-bit
device response. If rsv (DIO7, decimal value 64) is set, then that device is signaling that it requires
service. The meanings of the other bits are device-specific.

Serial Polls are normally performed in response to assertion of the Service Request (SRQ) bus signal by
some bus device. In Active Controller mode, with the interface device specified, the SPoll command
returns the internal SRQ status. If the internal SRQ status is set, it usually indicates that the SRQ line is
asserted. Driver488 then returns a 64. If it is not set, indicating that SRQ is not asserted, then Driver488
returns a 0. With an external device specified, SPoll returns the Serial Poll status of the specified external
device.

In Peripheral mode, the SPoll command is issued only to the interface, and returns the Serial Poll status.
If rsv (DIO7, decimal value 64) is set, then Driver488 has not been Serial Polled since the issuing last
Request command. The rsv is reset whenever Driver488 is Serial Polled by the Controller.

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 API Reference 6-53

SPollList
Syntax INT WINAPI SPollList(DevHandlePT devHandleList,

LPBYTE resultList, BYTE SPollFlag);

devHandleList is a pointer to a list of external devices.

resultList is an array that is filled in with the Serial Poll results of the corresponding
external devices.

SPollFlag refers to either ALL, WHILE_SRQ, or UNTIL_RSV.

Returns -1 if error

Bus States ATN•UNL, MLA, TAG, SPE, *ATN, ATN•SPD, UNT
Example deviceList[0] = wave;

deviceList[1] = timer;
deviceList[2] = dmm;
deviceList[3] = NODEVICE;
result = SPollList(deviceList,

resultList, ALL);

Returns the Serial Poll response for a list of
device handles.

See Also SPoll, PPoll

In Active Controller mode, the SPollList (Serial Poll) command performs a Serial Poll of the bus devices
specified and responds with a number from 0 to 255 (representing the decimal equivalent of the eight-bit
device response) for each device on the list. If rsv (DIO7, decimal value 64) is set, then that device is
signaling that it requires service. The meanings of the other bits are device-specific.

Serial Polls are normally performed in response to assertion of the Service Request (SRQ) bus signal by
some bus device. In Active Controller mode with the interface device specified, the SPollList command
returns the internal SRQ status for each device. If the internal SRQ status is set, it usually indicates that the
SRQ line is asserted. Driver488 then returns a 64. If it is not set, indicating that SRQ is not asserted, then
Driver488 returns a 0. With an external device specified, SPollList returns the Serial Poll status of the
specified external device.

In Peripheral mode, the SPollList command is issued only to the interface and returns the Serial Poll
status. If rsv (DIO7, decimal value 64) is set, then Driver488 has not been Serial Polled since the last
Request command was issued. The rsv is reset whenever Driver488 is Serial Polled by the Controller.

The SPollFlag refers to either ALL, WHILE_SRQ, or UNTIL_RSV. If ALL is chosen, all the devices are
Serial Polled and their results placed into the result array. If SPollFlag is WHILE_SRQ, Driver488 Serial
Polls the devices until the SRQ bus signal becomes unasserted, and the results are put into the result array.
If SPollFlag is UNTIL_RSV, Driver488 Serial Polls the devices until the first device whose rsv bit is set,
is found and the results are put into the result array.

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 API Reference 6-54

Status
Syntax INT WINAPI Status(DevHandleT devHandle, IeeeStatusPT result);

devHandle refers to either an IEEE 488 interface or an external device. If devHandle
refers to an external device, Status acts on the hardware interface to which the
external device is attached.

result is a pointer to a Status structure.

Returns -1 if error

Bus States None

Example result = Status(ieee,&StatusResult);
if (StatusResult.SRQ) {
printf(“We have a serial poll request”);
} else {
printf(“There is no serial poll request”);
}

See Also GetError, SPoll

The Status command returns various items detailing the current state of Driver488. They are returned in
a data structure, based on the following table.

Status Item Structure
Menber

Values and Description

Primary Bus Address .Primaddr 0 to 30: Two-digit decimal number.

Service Request .SRQ TRUE: SRQ is asserted, FALSE: SRQ is not
asserted.

The Primary Bus Address (.Primaddr) is the IEEE 488 bus device primary address assigned to
Driver488 or the specified device. This will be an integer from 0 to 30.

The Service Request field (.SRQ), as an active controller, reflects the IEEE 488 bus SRQ line signal. As a
peripheral, this status reflects the rsv bit that can be set by the Request command and is cleared when the
Driver488 is Serial Polled. For more details, refer to the SPoll command in this chapter.

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 API Reference 6-55

Talk
Syntax INT WINAPI Talk(DevHandleT devHandle, BYTE primary,

BYTE secondary);

devHandle refers to either an interface or an external device. If devHandle refers to an
external device, the Talk command acts on the associated interface.

primary and secondary specify the primary and secondary addresses of the device
which is to be addressed to Talk.

Returns -1 if error

Bus States ATN, TAG

Example errorcode = Talk (ieee, 12, -1);

See Also Listen, SendCmd

The Talk command addresses an external device to Talk.

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 API Reference 6-56

Term
Syntax INT WINAPI Term(DevHandleT devHandle, TermT *term,

DWORD termFlag);

devHandle refers to either an interface or an external device.

term is a pointer to the terminator structure.

termFlag can be either TERMIN, TERMOUT, or TERMIN+TERMOUT, specifying whether
input, output, or both are being set.

Returns -1 if error

Bus States None

Example term.EOI = TRUE;
term.nChar = 1;
term.EightBits = TRUE;
term.termChar[0] = 13;
errorcode = Term(ieee,&term,TERMIN);

See Also TermQuery, EnterX, OutputX, Status

The Term command sets the end-of-line (EOL) terminators for input from, and output to, I/O adapter
devices. These terminators are sent at the end of output data and expected at the end of input data, in the
manner of CR LF as used with printer data.

During output, Term appends the bus output terminator to the data before sending it to the I/O adapter
device. Conversely, when Driver488 receives the bus input terminator, it recognizes the end of a transfer
and returns the data to the calling application. The terminators never appear in the data transferred to or
from the calling application. The default terminators for both input and output are set by the startup
configuration and are normally CR LF EOI, which is appropriate for most bus devices.

End-Or-Identify (EOI) has a different meaning when it is specified for input than when it is specified for
output. During input, EOI specifies that input is terminated on detection of the EOI bus signal, regardless
of which characters have been received. During output, EOI specifies that the EOI bus signal is to be
asserted during the last byte transferred.

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 API Reference 6-57

TermQuery
Syntax INT TermQuery(DevHandleT devHandle, TermT *term,

INT termFlag);

devHandle refers to either an interface or an external device.

terminator is a pointer to the terminator structure.

termFlag can be either TERMIN, TERMOUT, or TERMIN+TERMOUT, specifying whether
input, output, or both are being set.

Returns -1 if error

Bus States None

Example None provided.

See Also Term, EnterX, OutputX, Status

This is a new function in Driver488/W95. The TermQuery function queries the terminators setting.
Terminators are defined by the TermT structure.

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 API Reference 6-58

TimeOut
Syntax INT WINAPI TimeOut(DevHandleT devHandle, DWORD millisec);

devHandle refers to either an IEEE 488 interface or an external device.

millisec is a numeric value given in milliseconds.

Returns -1 if error

Bus States None

Example errorcode = TimeOut(ieee,100); Sets the timeout value to 100 msec.

See Also TimeOutQuery, Reset

The TimeOut command sets the number of milliseconds that Driver488 waits for a transfer before
declaring a timeout error. The timeout value sets a limit on the total time allowed for an operation. For
example, when using the Enter command all expected data must be received within the specified timeout
period or a timeout error will occur.

Timeout checking may be suppressed by specifying a timeout value of zero seconds. The zero seconds
specification results in a timeout period of about 49 days.

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 API Reference 6-59

TimeOutQuery
Syntax INT WINAPI TimeOutQuery(DevHandleT devHandle,

DWORD *millisec);

devHandle refers to either an IEEE 488 interface or an external device.

millisec is a pointer to a buffer that is to receive the timeout value, given in milliseconds.

Returns -1 if error

Bus States None

Example None provided.

See Also TimeOut, Reset

This is a new function in Driver488/W95. The TimeOutQuery function queries the timeout setting,
given in milliseconds.

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 API Reference 6-60

Trigger
Syntax INT WINAPI Trigger(DevHandleT devHandle);

devHandle refers to either an IEEE 488 interface or an external device.

Returns -1 if error

Bus States With interface handle: ATN•GET
With external device handle: ATN•UNL, MTA, LAG, GET

Examples errorcode =
Trigger(ieee);

Issues a Group Execute Trigger (GET) bus command to those
devices that are already in the Listen state as the result of
a previous Output or Send command

errorcode =
Trigger(dmm);

Issues a Group Execute Trigger (GET) bus command to the
device specified

See Also TriggerList, Status, SendCmd

The Trigger command issues a Group Execute Trigger (GET) bus command to the specified device. If no
interface devices are specified, then the GET only affects those devices that are already in the Listen state as
a result of a previous Output or Send command.

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 API Reference 6-61

TriggerList
Syntax INT WINAPI TriggerList(DevHandlePT devHandleList);

devHandleList is a pointer to a list of external devices.

Returns -1 if error

Bus States ATN•UNL, MTA, LAG, GET
Example deviceList[0] = wave;

deviceList[1] = timer;
deviceList[2] = dmm;
deviceList[3] = NODEVICE;
errorcode = TriggerList(deviceList);

Issues a Group Execute Trigger
(GET) bus command to a
list of specified devices.

See Also Trigger, SendCmd, Status

The TriggerList command issues a Group Execute Trigger (GET) bus command to the specified devices.
If no interface devices are specified, then the GET affects those devices that are already in the Listen state as
a result of a previous Output or Send command.

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 API Reference 6-62

UnListen
Syntax INT WINAPI UnListen (DevHandleT devHandle);

devHandle refers to either an interface or an external device. If devHandle refers to an
external device, the UnListen command acts on the associated interface.

Returns -1 if error

Bus States ATN, UNL

Example errorcode = UnListen (ieee);

See Also Listen, UnTalk, SendCmd, Status

The UnListen command unaddresses an external device that was addressed to Listen.

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 API Reference 6-63

UnTalk
Syntax INT WINAPI UnTalk (DevHandleT devHandle);

devHandle refers to either an interface or an external device. If devHandle refers to an
external device, the UnTalk command acts on the associated interface.

Returns -1 if error

Bus States ATN, UNT

Example errorcode = UnTalk (ieee);

See Also Talk, UnListen, SendCmd, Status

The UnTalk command unaddresses an external device that was addressed to Talk.

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 API Reference 6-64

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 API Error Codes A-1

Appendix A

API Error Codes

Error Number and Message Text Description
00 OK No error has occurred.
01 TIME OUT - NOT ADDRESSED TO LISTEN ENTER as a Peripheral did not receive data within the

TIME OUT period.
02 AUTOINITIALIZE MODE NOT ALLOWED This error message is obsolete in Driver488 Rev.3.0.
03 SYSTEM ERROR - BUFFER MODE NOT SUPPORTED Internal system error. Report to factory.
04 TIME OUT ERROR ON DATA READ Expected bus data was not received within the TIME OUT

period.
05 SYSTEM ERROR - INVALID INTERNAL MODE Internal system error. Report to factory.
06 INVALID CHANNEL FOR DMA This error message is obsolete in Driver488 Rev.4.0.
07 TIME OUT ON DMA TRANSFER This error message is obsolete in Driver488 Rev.4.0.
08 TIME OUT - NOT ADDRESSED TO TALK OUTPUT as a Peripheral was not possible within the TIME

OUT period.
09 TIME OUT OR BUS ERROR ON WRITE Error occurred transferring a data byte to a bus service.
10 SEQUENCE - NO DATA AVAILABLE The user’s program attempted to read from Driver488 when

no response or data was available.
11 SEQUENCE - DATA HAS NOT BEEN READ The user’s program attempted to write data or commands to

Driver488 without reading back the response to a
previous command.

12 SYSTEM ERROR - ON PEN INTS ALREADY ON Internal system error. Report to factory.
13 SYSTEM ERROR - INVALID ON PEN INIT Internal system error. Report to factory.
14 SYSTEM ERROR - LIKELY MEMORY CORRUPTION Internal system error. Report to factory.
15 SYSTEM ERROR - ON PEN INTS ALREADY OFF Internal system error. Report to factory.
16 BOARD DOES NOT RESPOND AT SPECIFIED

ADDRESS
Driver488 is unable to communicate with the IEEE

interface board. Check the board address
configuration, and the software installation.

17 TIME OUT ON COMMAND (MTA) MyTalkAddress could not be sent within the TIME OUT
period.

18 TIME OUT ON COMMAND (MLA) MyListenAddress could not be sent within the TIME OUT
period.

19 TIME OUT ON COMMAND (LAG) Listen address(es) could not be sent within the TIME OUT
period.

20 TIME OUT ON COMMAND (TAG) Talk address could not be sent within the TIME OUT
period.

21 TIME OUT ON COMMAND (UNL) UnListen could not be sent within the TIME OUT period.
22 TIME OUT ON COMMAND (UNT) UnTalk could not be sent within the TIME OUT period.
23 ONLY AVAILABLE TO SYSTEM CONTROLLER Driver488 could not execute a command because it was not

the System Controller.

24 RESPONSE MUST BE 0 THROUGH 15 The RESPONSE parameter of the PPOLL CONFIG
command must be within the range of 0 to 15.

25 NOT A PERIPHERAL The REQUEST command is only valid when Driver488 is
in the Peripheral (*CA) mode.

26 SYSTEM ERROR - TIMER INTS ALREADY ON Internal system error. Report to factory.
27 SYSTEM ERROR - INVALID TIMER INIT Internal system error. Report to factory.
28 SYSTEM ERROR - TIMER INTS ALREADY OFF Internal system error. Report to factory.
29 ADDRESS REQUIRED PASS CONTROL requires an address.
30 TIME OUT VALUE MUST BE FROM 0 TO 65535 The TIME OUT period must be within the specified range.

A-2 API Error Codes 04-10-01 Personal488 for Windows 95/98/Me/NT/2000

31 MUST BE ADDRESSED TO TALK DATA or EOI SEND subcommands are invalid unless
Driver488 is already addressed to talk by MTA.

32 VALUE MUST BE BETWEEN 0 AND 255 Data bytes specified numerically in the SEND command
must be 8-bit integers.

33 INVALID BASE ADDRESS I/O port base addresses must end in 0, 1, or 8 when
expressed in hexadecimal.

34 INVALID BUS ADDRESS IEEE 488 bus addresses must be in the range of 0 to 30.
35 BAD DMA CHAN NO. OR DMA NOT ENABLED This error message is obsolete in Driver488 Rev.4.0.
36 NOT AVAILABLE TO A PERIPHERAL In Peripheral mode Driver488 cannot send bus commands

such as device addresses.
37 INVALID PRIMARY ADDRESS IEEE 488 bus addresses must be in the range of 0 to 30.
38 INVALID SECONDARY ADDRESS IEEE 488 bus secondary addresses must be in the range of

0 to 31.
39 INVALID - TRANSFER OF ZERO BYTES A #count of zero bytes is not valid.
40 NOT ADDRESSED TO LISTEN In Controller mode, ENTER without specifying a bus

address is not valid unless Driver488 is already
addressed to listen.

41 COMMAND SYNTAX ERROR Error in specifying command.
42 UNABLE TO CHANGE MODE AFTER BOOTUP This error message is obsolete in Driver488 Rev.4.0.
43 TIME OUT WAITING FOR ATTENTION As a Peripheral, executing an ENTER command, Attention

did not become unasserted within the TIME OUT
period.

44 DEMO VERSION - CAPABILITY EXHAUSTED The DEMO version of Driver488 is limited to 100
commands per session.

45 DEMO VERSION - ONLY ONE ADDRESS The DEMO version of Driver488 can control only one
instrument at one IEEE 488 bus address.

46 OPTION NOT AVAILABLE This error message is obsolete in Driver488 Rev.4.0.
47 VALUE MUST BE BETWEEN 1 AND 8 The IEEE 488 interface board clock frequency must be

between 1 and 8.
48 TIME OUT - CONTROL NOT ACCEPTED No device took control of the IEEE 488 bus after a PASS

CONTROL.
49 UNABLE TO ADDRESS SELF TO TALK OR LISTEN A TALK or LISTEN subcommand in a SEND command

specified the controller’s own address. Use MTA or
MLA instead.

50 TIME OUT ON COMMAND A time out error occurred during a SEND command.
51 CANNOT DMA ON ODD BOUNDARY Internal system error. Report to factory.
52 INTERRUPT %d DOES NOT EXIST Invalid interrupt chosen. Check hardware settings.
53 INTERRUPT %d IS NOT SHAREABLE Another device already controls this interrupt.
54 UNABLE TO ALLOCATE DYNAMIC MEMORY FOR

INT %d
Internal system error. Report to factory.

55 SHARED INTERRUPT %d CHAIN CORRUPTED Internal system error. Report to factory.
56 TOO MANY ACTIVE TIMEOUTS Internal system error. Report to factory.
57 INVALID DEVICE HANDLE %d Device handle was not opened. Must first open device and

assign handle.
58 OUT OF DEVICE HANDLES Too many device handles opened. Must close unused

handles.
59 UNKNOWN DEVICE: %s Device not configured. Use MakeDevice to create.
60 DRIVER NOT LOADED Driver is not loaded. Must load driver to run.
61 INVALID LIST OF DEVICE HANDLES Array of device handles does not contain valid handles.
62 INVALID TERMINATOR STRUCTURE Terminator structure does not contain valid data.
63 INVALID DATA POINTER Data pointer is NULL or points to invalid data.
64 INVALID POINTER TO STATUS STRUCTURE Status structure address is invalid or NULL.
65 INVALID NAME POINTER Name parameter is empty or address is invalid.
66 SYSTEM ERROR - INVALID INTERNAL POINTER Internal system error. Report to factory.
67 INVALID STRING FOR ERROR TEXT Error text string address is invalid.
68 UNABLE TO FIND ERROR CODE REPORTER Internal system error. Report to factory.
69 UNABLE TO TRANSLATE ERROR CODE Internal system error. Report to factory.

Personal488 for Windows 95/98/Me/NT/2000 04-10-01 API Error Codes A-3

70 DMA CHANNEL %d DOES NOT EXIST Specified DMA channel does not exist. Check hardware
settings.

71 DMA CHANNEL %d NOT AVAILABLE Specified DMA channel is not available for use by Driver.
Choose another channel.

72 DMA CHANNEL %d ALREADY IN USE Specified DMA channel is already being used by another
device. Choose another channel.

73 UNABLE TO ALLOCATE MEMORY FOR
ASYNCHRONOUS I/O

Internal system error. Report to factory.

74 UNKNOWN DOS DEVICE NAME Driver488 DOS device name not known. Must create
Driver488 DOS device name with the Make Dos Name
command.

75 UNABLE TO ALLOCATE MEMORY FOR NEW DEVICE Ran out of memory. Remove some devices to restore
memory.

76 UNKNOWN SLAVE DEVICE Internal system error. Report to factory.
77 SLAVE DEVICE NOT SPECIFIED Corrupt initialization file. Run the Install program.
78 UNABLE TO CREATE DOS DEVICE NAME Internal system error. Report to factory.
79 UNABLE TO INITIALIZE DEVICE Corrupt initialization file. Run the Install program.
80 ATTEMPTED TO REMOVE SLAVE DEVICE Attempt to remove device which is required for operation

by another device.
81 DATA OVERRUN Serial input overflow.
82 (None) (None)
83 FRAMING ERROR Serial data corrupt. Possible incorrect Serial port

configuration.
84 TIME OUT ON SERIAL COMMUNICATION Serial device did not respond.
85 UNKNOWN PARAMETER OF TYPE %d SPECIFIED

:\n %s = %s
Internal system error. Report to factory.

86 BUS ERROR - NO LISTENERS No Listeners found on bus.
87 TIME OUT ON MONITOR DATA Expected terminator was not received.
88 INVALID VALUE SPECIFIED Specified value is invalid for application. See command for

proper value types.
89 NO TERMINATOR SPECIFIED Terminator must be specified. Check terminator value.
90 NOT AVAILABLE IN 8-BIT SLOT Specified option is not available when the I/O adapter is

fitted into an 8-bit slot.
91 TOO MANY PENDING EVENTS Internal system error. Report to factory.
92 BREAK ERROR Serial receiver detected break.
93 UNEXPECTED CHANGE OF CONTROL LINES Handshake lines changed during transmission.
94 TIME OUT ON CTS Hardware handshake not satisfied within time out. Check

cabling and connected device.
95 TIME OUT ON DSR Hardware handshake not satisfied within time out. Check

cabling and connected device.
96 TIME OUT ON DCD Hardware handshake not satisfied within time out. Check

cabling and connected device.
97 CANNOT SEND EOI WITHOUT DATA Transmission of EOI was requested when no data was

available to send.
98 ADDRESS STATUS CHANGE DURING TRANSFER Talker/Listener mode changed during data transfer,

possibly due to activity of some other device on the
IEEE 488 bus.

99 UNABLE TO MAKE NEW DEVICE MakeDevice or CreateDevice was unable to create a new
device, possibly due to the number of devices which
already existed.

100 (None) (None)
101 COMMAND SYNTAX ERROR: % Command interpreter was unable to interpret command and

no other information was available.
102 ERROR OPENING DEVICE %s Possible loss of electrical or logical connection.
103 DEVICE %s CURRENTLY LOCKED BY %s Device is in use by another processor in a multiprocessing

environment. (This does not refer to multitasking
environments.)

A-4 API Error Codes 04-10-01 Personal488 for Windows 95/98/Me/NT/2000

104 TIME OUT ON NETWORK COMMUNICATIONS Unable to access a remote communications device within
the time out interval.

105 ERROR: DEVICE IS NOT OPEN Attempt to access a device which has not been opened or
has subsequently been closed.

106 IPX IS NOT LOADED Unable to access device via network communications.
107 INTERFACE IS BUSY Remote IEEE 488 interface is busy.
108 TIMER/COUNTER REQUIRES INTERRUPTS TO BE

CONFIGURED
Interrupts are required for proper Driver488 function of this

device.
109 INVALID INTERRUPT LEVEL Request interrupt level is not supported by this hardware.
110 MUST REMOVE DOS NAME FIRST Attempted to remove a Driver488 device underlying a DOS

device.
111 NO WINDOWS TIMERS AVAILABLE Driver488/W31 requires use of a Windows timer that was

unavailable. Close other applications using Windows
timers and retry.

112 OBSOLETE LIBRARY FUNCTION The called function is no longer supported.
113 UNABLE TO GET PROCEDURE ADDRESS Thunking layer internal error.
114 MEMORY ALLOCATION ERROR Thunking layer internal error.
115 FUNCTION ARGUMENT IS BAD READ POINTER An invalid pointer argument was passed to a thunking layer

function.
116 FUNCTION ARGUMENT IS BAD WRITE POINTER An invalid pointer argument was passed to a thunking layer

function.
117 OTHER THUNKING-LAYER ERROR Thunking layer internal error.
118 THE NAMED DEVICE IS ALREADY OPEN OpenName was called with the name of a device that is

already open.
119 INVALID SYSTEM RESOURCE SETTING Driver detected invalid PnP resource setting.
120 INTERFACE HARDWARE IS NOT PRESENT OR,

HAS NOT BEEN SELECTED.
OpenName was called with the name of a device that has

not been assigned to a hardware device.

Personal488 for Windows 95/98/Me/NT/2000 03/16/01 IEEE488 ASCII Code Maps B-1

Appendix B

ASCII Codes

B-2 IEEE488 ASCII Code Maps 03/16/01 Personal488 for Windows 95/98/Me/NT/2000

Personal488 for Windows 95/98/Me/NT/2000 03/16/01 Troubleshooting C-1

Appendix C

The IEEE 488 Bus Standard …… C-1
Analyzing the IEEE Bus …… C-2
Common Problems and Solutions …… C-3
New Standards Simplify Programming …… C-6
 Frequently Asked Personal 488 Questions …… C-7

Troubleshooting IEEE 488 Systems and Software
To efficiently diagnose, troubleshoot and verify IEEE 488 systems, you should first have some
basic knowledge of the IEEE bus. Since the hardware portion of the IEEE standard is rigorous
and stable, most of the problems you will encounter during the system integration process will be
in the application software. This note contains a brief IEEE tutorial followed by troubleshooting
techniques.

The IEEE 488 Bus Standard

Addresses

Each device on the IEEE 488 bus has a unique address — even the controller. The addresses
range from 0 to 30. Addresses are the means by which controllers select specific instruments. To
send data to a device, the controller must both address itself to talk and address the device to
listen.

Commands

IEEE 488 recognizes two types of commands: Device-Dependent Commands (DDCs) and IEEE
488-specific commands. DDC's such as “R0F0T2X” are simply data sent from one device to
another (in this instance from the controller to an instrument). IEEE 488-specific commands
come in two forms; multiline commands and uniline commands. Multiline commands are sent on
the data bus lines; uniline commands are individual signals on the bus.

The uniline signals are the easiest to decipher because each signal has one specific purpose. All
but two of these signals are issued exclusively by the controller.

Uniline Commands

• Interface Clear (IFC) is the most dramatic uniline command. It stops all activities on the
bus and returns the interface of every device to a quiescent state.

• Remote Enable (REN) informs the devices on the bus that the IEEE interface is active. It
does not lock out an instrument’s front panel.

• Attention (ATN) is the signal that differentiates data from multiline commands on the
data bus. When ATN is asserted by the controller, the bits on the data bus are actually
multiline commands being issued to all of the devices on the bus.

• End Or Identify (EOI) can be issued by any device talking on the bus. Talkers use EOI to
notify listeners that the end of the transmission has taken place.

• Service Request (SRQ) can be issued by any device on the bus. It allows devices on the
bus to interrupt, or alert, the controller to an internal situation that needs servicing (e.g.
“my buffer is full,” “I’ve encountered an error,” “my trigger has been satisfied”).

C-2 Troubleshooting 03/16/01 Personal488 for Windows 95/98/Me/NT/2000

Multiline Commands

Now that you have seen the uniline commands and have a sense for their application, we’ll
discuss multiline commands. Remember, multiline commands are transmitted from the controller
to the devices on the data bus. The devices know that they are not data because the ATN line is
asserted. When ATN is asserted by the controller all of the devices must listen to the commands.

Multiline commands serve several functions, most notably to address instruments to talk or listen.
To address a device to listen, the controller will assert ATN and place the listen address of the
selected device on the data bus. There are 31 listen addresses. These are called the Listen Address
Group (LAG). A similar process is used for the Talk Address Group (TAG).

 Most IEEE drivers, including IOtech’s Driver488 for our line of IEEE controllers, have high
level commands that perform several elemental IEEE 488 operations. In the IOtech Driver488
manual, every command explanation contains a field called BUS STATES. In BUS STATES, a
complete explanation of what is happening on the bus is displayed. For example, let’s examine
IOtech’s Driver488 command ENTER, which simply gets one reading from a specified device:

BUS STATES:

ATN•UNL, MLA, TAG, *ATN, data..., ATN

First, this indicates that ATN is asserted. Next, the multiline command UNListen (UNL) instructs
all devices that were in the listen state to exit that state. The controller then issues My Listen
Address (MLA), its own address in the listen address group, and issues the Talk Address Group
(TAG) for the specified device. Next, it unasserts ATN, which notifies the addressed device that
it may now transmit its data. Finally, after the data has been sent (perhaps ending with an EOI),
the controller once again asserts ATN.

Analyzing the IEEE Bus

The simplest way to decipher the controller’s operations and the response of the instruments,
regardless of what software or hardware you are using, is with an IEEE analyzer. Analyzer488
from IOtech allows the programmer to view all of the transactions on the bus in real time or to
record them into its 32K non-volatile transaction buffer for later inspection.

The following example problems are all diagnosed using the Analyzer488. Analyzer488 can be
operated as a portable bench-top analyzer from its easy to use keypad, or from the included
Analyst488 PC software. Analyzer488 allows the events on the IEEE bus to be monitored, stored
and analyzed. It can also be used to control devices on the bus for exercising and verifying
instrument operation. The Analyzer488 will automatically translate the state of the data bus and
control lines into easy to read IEEE messages or ASCII equivalents like SPE, TAG16, CR, and
LF. Along with its large capture buffer, Analyzer488 contains a comprehensive set of trigger
features that allow the desired group of transactions to be easily pinpointed and identified.

Personal488 for Windows 95/98/Me/NT/2000 03/16/01 Troubleshooting C-3

Common Problems and Solutions

Occasionally systems will encounter problems due to the interaction of several devices in the
system. These are among the most difficult problems to debug. You should connect an
Analyzer488 and let it run while the application is processing. Recording the bus transactions as
they occur and inspecting the transactions one at a time will usually allow you to diagnose these
types of problems rather quickly.

Often the problems encountered in a system are due to interactions between one device and the
controller. Here is a list of common symptoms and their suggested solutions:

“I get a time-out error whenever I try to send device-dependent commands to my instrument.”

The first thing you should check is the setting of IEEE addresses. Every device on the bus must
have a unique address between 0 and 30. When sending Device-Dependent Commands (DDCs)
to an instrument to change its state or operating mode, the device will first be addressed to listen,
then the data will be sent. If the device has TALK and LISTEN indicators on its front panel, you
can tell immediately if the address used by the controller matches the actual address of the
instrument. If the LISTEN indicator does not come on when sending commands to the device,
you are probably using the wrong address for that device.

As we mentioned in the tutorial section of this note, when the ATN line is asserted by the
controller all of the instruments on the bus will handshake with, and accept data from, the
controller. After the time-out is received, step through the transactions recorded by the
Analyzer488. If no instrument addressing commands such as Listen Address Group 16 (LAG16)
were recorded, your instrument is probably off or broken, or the cable is disconnected. Regardless
of the present state of the instrument, it should handshake (accept data) when the ATN line is
asserted. If the addressing commands were successfully recorded on the analyzer, step through
the transactions until the ATN line is unasserted. If there are no more recorded transactions, then
no instrument was placed in the Listen mode. The controller had no one to handshake with so it
“timed-out.” Your instrument is probably set to the wrong address.

“At certain points in my program, the system stops and I receive a time-out error.”

If portions of your program are operating correctly, then you can be certain that your addresses
are set correctly. If you encounter a time-out error in your program after other instrument tasks
have been completed successfully, you may have encountered an instrument-readiness problem.

IEEE interfaces and software like IOtech’s Personal488 operate very rapidly and can sometimes
out-run the instrument they are controlling. For most instruments, data requests are performed in
two steps: sending the necessary setup or inquiry commands via DDCs, then addressing the
device to Talk. It is possible to issue the necessary commands to request the data from the
instrument and then address it to Talk long before it is prepared to supply the requested data.
Many instruments will simply pause the bus until they have prepared the data to send. However,
other instruments react poorly by “hanging up.”

To check for this “outracing” condition, place the Analyzer488 into the Slow Handshake mode.
This will effectively slow the transaction speed of the bus to a rate set by the Analyzer488. If the
data request takes place successfully, it is probably an “outracing” condition.

C-4 Troubleshooting 03/16/01 Personal488 for Windows 95/98/Me/NT/2000

“My instrument seems unaffected by the commands I send to it.”

If you have already made certain that you are sending the commands to the right instrument
address, you may have left off a crucial piece of information that instructs the instrument to
process the commands.

IEEE systems usually use data delimiters called terminators. A Talker will inform a Listener that
the data string has come to an end by appending a predefined terminator to the end of its data
string. Although terminators are issued solely by the talking device, the listening device(s) must
know what terminator to expect. Usually IEEE instruments will issue a carriage return (CR) and a
line feed (LF) as their terminator. Some instruments will not process the incoming command
string until they detect the proper terminator. You should step through the transactions captured
by the Analyzer488 to verify the transmission of the terminator, then make certain that it agrees
with the terminator expected by your instrument.

Some instruments have a DDC which instructs the instrument to process all of the previously
received commands. This EXECUTE command (typically a character like ‘X’) allows a
programmer to send several commands to an instrument in any order over any length of time and
then execute them all simultaneously within the instrument. If the EXECUTE DDC is not sent,
the state of the instrument will not change. It will react as if the commands were never received.

“When I ask for data, nothing is returned.”

This could be an address or terminator problem like the ones discussed above. See the previous
sections to diagnose these problems.

Not all instruments are ready to supply data whenever you ask. Some instruments have nothing to
say until they are commanded to acquire or generate data. Some data acquisition instruments have
triggering features which allow the instrument to collect and transmit data only after a specified
event has occurred. A typical multimeter might have a default trigger of TRIGGER ON TALK
which would enable the multimeter to take a reading every time the controller addressed it to
Talk. If the same multimeter was set to TRIGGER ON GET, no reading would be available until
the controller issued a Group Execute Trigger.

If the device has no data to give, the Analyzer488 will show that the controller has been
addressed to Listen and the device was addressed to Talk and then the process stopped. The
handshake indicators show that Not Ready For Data (NRFD) was unasserted by the controller but
the instrument never asserted Data Valid (DAV). Make certain that your device has data to
transmit before you ask it for some.

IOtech’s Driver488 has the capability of assigning a time-out value to the system. If an
instrument does not respond within the specified time-out, the process is aborted. In some
instances, an instrument may be unable to respond within the specified time-out period and the
time-out period will have to be increased.

Personal488 for Windows 95/98/Me/NT/2000 03/16/01 Troubleshooting C-5

“When I ask for data, bad data is returned.”

Many times the variability of data formats of an instrument will cause problems. Devices can
transmit data in binary, ASCII, BCD, packed BCD, or anything else that will fit into 8 bits. Data
terminators can be EOI, a byte count, or imbedded characters like CR LF. Data can be sent with
prefixes, suffixes, or full headers. IOtech’s Driver488 can account for all of these parameters, but
some other drivers may not allow this level of flexibility.

When using higher level software packages, the problem of data formats may be impossible to
overcome. Usually, menu-driven and turnkey packages go to great lengths to hide the IEEE bus
from the operator. The documentation, therefore, makes no attempt to inform the operator of what
is actually happening on the bus.

You may encounter a problem if your instrument transmits data in a format that is not recognized
by your software package. Check your instrument manual for data format characteristics. Does
your instrument transmit non-numeric prefixes or suffixes; is the data in binary or ASCII? Some
software drivers will automatically throw away any non-numerics. Others do not. Even if your
software throws the non-numerics away, you may encounter problems with instruments that
transmit numbers like channel tags in their data prefix.

Most instruments, including IOtech’s ADC488 analog to digital data acquisition instrument, can
be programmed to adjust their data format for software compatibility. Analyzer488 allows you to
quickly inspect the data being transmitted by your instrument, enabling you to make the proper
adjustments in your software.

“An SRQ from an instrument sometimes causes a catastrophe.”

The asynchronous nature of instrument interrupts can sometimes cause elusive problems. The
best way to attack a problem like this is to start the Analyzer488 recording and just let it and the
system run. Analyzer488 has a large 32K transaction buffer that is configured in a circular
fashion. After 32K transactions have been recorded, new transactions will overwrite the oldest
transactions. There is a very high probability that the events leading up to the system “crash” will
still be in the recorded memory (not overwritten) after the system has locked-up. Stepping
backwards in memory can usually uncover the sequence of operations that caused the problem.
The Analyzer488 can also be set up to trigger on the occurrence of one or several SRQs with both
a post and pre-trigger assigned. In this way a specified number of events can be captured before
and after the occurrence of an SRQ. The Analyzer488 also has comprehensive search features
allowing the capture buffer to be scanned for all of the occurrences of any event, including an
SRQ.

Some instruments have the capability of generating an SRQ for any of several internal events.
Usually an SRQ mask is sent to the instrument to instruct it to generate an SRQ for only a
selected subset of those events. Some instruments, by default, will interrupt the controller with an
SRQ when an internal error is encountered and not respond to any further bus transactions until
the interrupt is serviced. The next time your application program requests data from that
instrument, your system will fail. By inspecting the Analyzer488 transaction recording working
backward from the end, it will be obvious that an SRQ was asserted by someone on the bus and
that it remained without service.

C-6 Troubleshooting 03/16/01 Personal488 for Windows 95/98/Me/NT/2000

“My system occasionally locks up.”

This is another of those intermittent problems that can take a long time to troubleshoot, especially
if the mean time between failures is several hours, days or months. As before, the best way to
approach the problem is to allow the Analyzer488 to record all of the transactions occurring on
the bus. When the number of transactions goes beyond 32,767, the capture pointer will wrap
around and continue to record. The last 32,767 transactions will always be stored in memory.
When the system crashes, the processing of IEEE bus transactions will probably end also. With
the last 32K transactions captured in memory, it is easy to step back through the capture buffer
and decipher the sequence of operations that caused the crash.

One possible cause for an intermittent crash problem is the asynchronous occurrence of SRQs as
discussed above. There may be areas in your application program that do not react well to being
interrupted. Since the SRQ can happen at any time, it may or may not occur during the processing
of this sensitive area. But the longer the system runs, the probability that the SRQ will happen at
exactly the wrong time increases. A sensitive area may be a part of your code that uses a group of
closely related variables that are modified by the SRQ handler. For example, three IEEE 488
counters are used to take readings from three motion encoders. Each counter is programmed to
generate an SRQ when its count reaches 256. The SRQ handler reads all three counters and stores
them into three separate variables used later by the main program. The main program has a loop
that reads the three variables, combines them with some calculation, and sends commands to a
motor controller. If the main program was in the process of using the variables and an SRQ
occurred (which modifies all three variables), the main program may end up using one old value
and two new ones in its calculation.

One way to avoid this kind of problem is to disarm the automatic SRQ vectoring during the
processing of sensitive program areas. IOtech’s Driver488 has several means by which to arm,
disarm and synchronize the servicing of SRQs to your program.

Another source of system malfunctions is from the instruments themselves. Most of today’s
complex instruments are microprocessor controlled. The internal processor handles the collection
of data, the changing of programmable states, the monitoring of trigger events, and the
communication on the IEEE interface. These instruments are actually computers, prone to all of
the same problems as any other computer.

It is possible that your instrument reacts improperly to a perfectly good application program. The
transaction report that Analyzer488 prints out can be used to communicate instrument problems
to the manufacturer. The report is easy to read and concisely describes the operation of the
controller and the response of the instrument.

New Standards Simplify Programming

Many of the difficulties encountered during the development of IEEE software are due to the
non-standard elements of operating the IEEE bus. Terminators, common command syntax, and
SRQ handling, among others, were not standardized within IEEE 488.1 and were left to the
instrument and controller designers to deal with.

New standards and extensions to older standards are now becoming available that may
significantly simplify IEEE system integration. Although supported by only a few instruments
presently, standards like IEEE 488.2 and SCPI (Standard Commands for Programmable
Instruments) are changing the way instruments are controlled.

The IEEE 488.2 standard is, for the most part, an extension to the present standard, IEEE 488.1.
There are only a few hardware differences between the new and old standards, assuring that older
instruments conforming to IEEE 488.1 can still be used alongside newer IEEE 488.2 instruments.

The major difference between the two standards lies in the software protocol. Previously non-
standard elements of bus communication such as terminators and data types have now been
included in the standard. These standards will eliminate some of the variables encountered when
integrating instrumentation systems, making debugging simpler.

Personal488 for Windows 95/98/Me/NT/2000 03/16/01 Troubleshooting C-7

Frequently Asked Personal488 Questions

Why does the driver return the error message “Time Out on Command?”

The most common cause for ‘Time Out on Command’ error is an improperly installed Personal488 interface.
Hardware conflicts, defective interfaces and miss-configured software all lend this type of time out errors.

In addition, failing to power your instruments or failing to connect the IEEE488 cable can also cause this error

What is the meaning of the following error message “Time Out On Data Read?”

The most common cause for this time out error is incorrectly configured EOS terminators. If Personal488 is
expecting a Line Feed (LF) when a Carriage Return (CR) is used, then the transmission will never terminate and a
time out error will occur. To correct this problem, review your instrument’s documentation to determine the
correct EOS terminator.

Another cause for this time out error is an incorrectly programmed instrument. If an instrument does not have data
to send or is not in the proper mode for transmitting data a time out error will occur. To correct this problem, refer
to the instrument’s documentation for the correct programming procedures.

What are IEEE488 terminators?

IEEE488 terminators, sometimes referred to as the EOS characters, are special characters used to signal the end of
a data transfer. Typical terminating characters are carriage return <CR> and line feed <LF> and problems will
occur when terminators are mismatched. For example, if Personal488 sends <CR><LF> when an instrument
expects <LF>, an error typically happens.

Why does my program run once then post the error message “Driver Not Loaded?”

This error message is typically encountered within the Visual Basic environment. Within a Visual Basic
application, all active device handles must be closed before the application exits and returns to the Visual Basic
environment. If any device handles are left, then upon restarting the program Driver488 will report “Driver Not
Loaded” indicating that the handle is unavailable. To recover from this error, exit and restart Visual Basic.
Restarting Visual Basic will force Driver488 to close all the handles and unload from memory. To avoid this error
use the Close function on all the open handles before stopping the application.

When running WinTest, why do I get the message “Driver Not Loaded ?”

The most common cause for this condition is an incorrect installation or incorrectly configured hardware. Refer to
the section “Driver and Support Software Installation” or “Installation Verification”

C-8 Troubleshooting 03/16/01 Personal488 for Windows 95/98/Me/NT/2000

My program has been running on an older PC for many years without any problems. Now I have installed
Personal488 on my new PC and verified that the installation is working correctly. When I run my program it
stops and reports the message “Time out on data read.” Why?

With today’s fast PC, timing problems often occur when an application migrates from a slow PC to a fast PC.
This is due to programmers sprinkling delays throughout their code in order to wait for instruments to perform
tasks. Some programs, originally written on slow PCs, did not use delays because code execution was slow. Some
programmers even used For..Next loops as delays. All of these scenarios become problems when faster PCs are
used. For example, inherent delays in slow code disappear; For..Next loop delays become shorter; And programs
stop running. These issues can be avoided by polling instruments for status before sending or receiving data. If
time delays must be used then make sure the delay reads the system clock for timing information.

I am programming in Visual Basic. My interface is installed correctly, but the “Enter” function returns
immediately with no data. Why?

The most common trap Visual Basic programmers fall into is not allocating space in a string variable.
Dimensioning the string variable is not enough. Adequate space must be allocated in the string for the expected
data. For example, MyString = Space$(10) allocates enough space for 10 characters in MyString.

Personal488 for Windows 95/98/Me/NT/2000 03/16/01 Hardware Specifications D-1

Appendix D

PCI488 Specifications …… D-1

AT488pnp Specifications …… D-1
CARD488 Specifications …… D-1
AT488 Specifications …… D-2

GP488B Specifications …… D-2
GP488B/MM Specifications …… D-2

Hardware Specifications

PCI488 Specifications

Note: These specifications are subject to change without notice.

IEEE 488 Controller Device: IOT7210
Maximum Transfer Rate: 32-bit: 1 Mbyte/s (reads and writes)
Dimensions: Half-size board; occupies one PCI slot
IEEE 488 Connector: Accepts standard IEEE 488 connector with metric studs
Digital I/O Connector: Standard 9-pin female DSUB connector
Power: 500 mA max @ 5 V from PC
Environment: 0 to 70°C, 0 to 95% RH, non-condensing
Digital I/O: Each signal can source 2 mA @ 3.7 V (6 mA @ 3.2 V) and

sink 2 mA @ 0.4 V (6 mA @ 0.9 V)
Multiple Boards: Up to four PCI488 boards can be installed into one PC

AT488pnp Specifications

Note: These specifications are subject to change without notice.

IEEE 488 Controller Device: IOT7210
Maximum Transfer Rates: 16-bit DMA: 1 Mbyte/s (reads), 800 Kbyte/s (writes)
Dimensions: Full-size board, two card edges; occupies one ISA slot
IEEE 488 Connector: Accepts standard IEEE 488 connector with metric studs
Digital I/O Connector: Standard 9-pin female DSUB connector
Power: 1.0 A max @ 5 V from PC
Environment: 0 to 70°C, 0 to 95% RH, non-condensing
DMA: 16-bit DMA on channels 5, 6, and 7
Interrupts: IRQ 3, 4, 5, 7, 10, 11, 12, or 15
Digital I/O: Each signal can source 2 mA @ 3.7 V (6 mA @ 3.2 V) and

sink 2 mA @ 0.4 V (6 mA @ 0.9 V)
Multiple Boards: Up to three AT488pnp boards can be installed into one PC

CARD488 Specifications

Note: These specifications are subject to change without notice.

IEEE 488 Controller Device: IOT7210
Maximum Transfer Rate: 1 Mbyte/s (reads and writes)
Dimensions: Type II (5 mm) PCMCIA card
Bus Interface: PCMCIA PC Card Standard 2.1
IEEE 488 Connector: Accepts standard IEEE 488 connector with metric studs via custom cable
Cable: PCMCIA to IEEE 488, CA-137 (included)

D-2 Hardware Specifications 03/16/01 Personal488 for Windows 95/98/Me/NT/2000

AT488 Specifications

Note: These specifications are subject to change without notice.

IEEE 488 Controller Device: IOT7210
Maximum Transfer Rates: 16-bit DMA: 1 Mbyte/s (reads), 800 Kbyte/s (writes); 8-bit DMA: 330

Kbyte/s (reads), 220 Kbyte/s (writes)
Dimensions: Full-size board, two card edges; occupies one ISA slot
IEEE 488 Connector: Accepts standard IEEE 488 connector with metric studs
Power: 1.0 A max @ 5 V from PC
Environment: 0 to 70°C, 0 to 95% RH, non-condensing
DMA: 16-bit DMA on channels 5, 6, and 7; 8-bit DMA on channels 0, 1, 2, and 3 (jumper selectable)
Interrupts: IRQ 2, 3, 4, 5, 6, or 7 (8-bit slot); IRQ 3-7, 9-12, 14, or 15 (16-bit slot)
IEEE 488 I/O Base Address: &H02E1, &H22E1, &H42E1, or &H62E1
Multiple Boards: Up to four AT488 boards can be installed, sharing a single DMA channel and interrupt

line

GP488B Specifications

Note: These specifications are subject to change without notice.

IEEE 488 Controller Device: IOT7210
Maximum Transfer Rate: 8-bit DMA: 330 Kbyte/s (reads and writes)
Dimensions: Half-size board, one card edge; occupies one ISA slot
IEEE 488 Connector: Accepts standard IEEE 488 connector with metric studs
Power: 650 mA max @ 5 V from PC
Environment: 0 to 70°C, 0 to 95% RH, non-condensing
DMA: 8-bit DMA on channels 0, 1, 2, and 3 (jumper selectable)
Interrupts: IRQ 2, 3, 4, 5, 6, or 7
IEEE 488 I/O Base Address: &H02E1, &H22E1, &H42E1, or &H62E1
Multiple Boards: Up to four GP488B boards can be installed, sharing a single DMA channel and interrupt

line

GP488B/MM Specifications

Note: (1) GP488B/MM is only compatible with the Ampro PC/104. (2) Only GP488B/MM Revision B
is discussed in this manual. (3) Microswitches 6, 7, and 8 on switch SW1 do not have a function
on this board. (4) These specifications are subject to change without notice.

IEEE 488 Controller Device: IOT7210
Maximum Transfer Rate: 8-bit DMA: 330 Kbyte/s (reads and writes)
Connector: 26-pin header ribbon cable to IEEE 488 standard connector
Power: 650 mA @ 5 V from PC
Environment: 0 to 70°C; 0 to 95% RH, non-condensing
DMA: 8-bit DMA on channels 0, 1, 2., and 3 (jumper selectable)
Interrupts: IRQ 2, 3, 4, 5, 6, or 7
IEEE 488 Base I/O Addresses: &H02E1, &H22E1, &H42E1, or &H62E1

Personal488 for Windows 95/98/Me/NT/2000 03/16/01 National Instruments—Compatible Drivers E-1

Appendix E

Overview …… E-1
Program Requirements …… E-1

Installation …… E-2
Upgrading from a Previous Version …… E-2
Miscellaneous Hints and Tips …… E-2

File Structure …… E-2

National Instruments — Driver488/NI/32 2.0

Overview

This package is installed automatically by the Windows 95/98/Me/NT/2000 setup program.

Driver488/NI/32 will allow applications developed for use with National Instruments 32-bit IEEE488
interface driver (GPIB-32.dll) to communicate through the IOtech Personal488 line of interfaces.
32-bit Windows programming languages, including LabView for Windows, are supported.

The following Personal488 interfaces are supported:
IOtech Personal488
IOtech Personal488/AT
IOtech Personal488/ATpnp
IOtech Personal488/CARD
IOtech Personal488/MM
IOtech Personal488/PCI

The hardware I/O settings (port, interrupt, etc...) are stored in the registry. The Control Panel Applet takes
care of all configuration information.

Program Requirements
The following software is required:

• Microsoft Windows 95/98/Me/NT/2000 Operating Systems
• Driver488/W95 or /WNT
• Application written to communicate through Gpib-32.dll.

National Instruments—Compatible Drivers 03/16/01 Personal488 for Windows 95/98/Me/NT/2000 E-2

Installation
The IOtech hardware and standard 32-bit windows drivers must first be correctly installed and configured
for use with Driver488/NI/32.

If it is not, follow these steps:

1. Install Driver488/W95 (or WNT) and the Personal488 hardware as described in the User Manual. You
must have a working software and hardware installation before proceeding to the next step. The
Driver488/W95 installation copies the Driver488/NI files to your computer in a directory called
"Driver488 NI" under "Programming Language Support\Compatibility" under the installation
directory.

2. Copy the file Gpib-32.DLL into the Windows System directory (normally "C:\Windows\System") over
the existing file. (You may want to make a backup copy of the existing Gpib-32.DLL before
performing this step.)

Upgrading from a Previous Version
If you have been using the 16-bit version, communication was through Gpib.dll. The 32-bit version uses
Gpib-32.dll. Follow the instructions in step 2.

Miscellaneous Hints and Tips
This driver is a direct replacement of National Instruments GPIB-32.DLL. No program modifications are
required. IBDIAG, IBTEST, IBIC, & GPIBINFO are not supported. Asynchronous I/O is not explicitly
supported and will be treated as synchronous.

The interface "IEEE0" must be defined in the "IEEE488" control panel applet. The interface hardware
selected for "IEEE0" will be used.

The interface name "GPIB0" is inferred and does not have to be defined. Any additional device names
(ex. "DEV1") should be defined in the "IEEE488" control panel applet if they are to be explicitly used.

EOI must accompany any termination characters on data reads.

File Structure
(Windows - System directory)\GPIB-32.DLL (driver, installed)

	Personal488 User's Manual
	Warranty
	Warnings, Cautions, Notes and Tips
	Table of Contents
	1 - Personal488 Overview
	Personal488 Hardware
	Hardware Products
	Hardware Configurations

	Plug-and-Play Devices
	Software Installation

	2 - CD-ROM, Driver 488 Software Packages
	IOtech, Inc. IEEE 488.2 Software Products
	Driver488 Packages
	Driver488/DRV
	Driver488/SUB
	Driver488/W31
	Win9x_WinNT Folder

	3 - Installation
	Windows 95 Users
	Software Installation
	Add New Hardware Procedure (non plug-and-play users only):
	Hardware Installation for Windows 95 Users

	Windows 98 Users
	Software Installation
	Add New Hardware Procedure (non plug-and-play users only):
	Hardware Installation for Windows 98 Users

	Windows Me Users
	Software Installation
	Add New Hardware Procedure (non plug-and-play users only):
	Hardware Installation for Windows Me Users

	Windows NT Users
	Software Installation
	Hardware Installation

	Windows 2000 Users
	Software Installation
	Add New Hardware Procedure (non plug-and-play users only):
	Hardware Installation for Windows 2000 Users

	4 - Hardware Configuration Reference
	PCI488 Users - Automatic
	AT488pnp Users - Automatic
	Card488 Users - Automatic
	AT488 Configurations
	GP488B Configurations
	GP488B/MM Configurations

	5 - Using IEEE 488
	IEEE 488 Configuration Utility
	Interfaces
	External Devices
	Configuration Parameters

	WinTest – Driver488 Workshop
	What is Wintest?
	Why use Wintest?
	Who uses Wintest?
	Where is Wintest located?
	How can I verify that my Personal488 interface is installed and working?
	How do I communicate with my instrument?
	What is a device handle?

	Differences Between 32-bit and 16-bit Driver488 Software
	General Differences
	Specific Differences

	Programming Language Support
	Microsoft Visual C++
	Borland C++
	Microsoft Visual Basic
	Borland Delphi
	Support for Other Languages
	16-Bit Driver488/W95 Compatibility Layer

	6 - API Reference
	Abort
	Arm
	AutoRemote
	BusAddress
	CheckListener
	ClearList
	Close
	ControlLine
	DigArm
	DigArmSetup
	DigRead
	DigSetup
	DigWrite
	Disarm
	EnterX
	Error
	FindListeners
	GetError
	GetErrorList
	Hello
	KeepDevice
	Listen
	Local
	LocalList
	Lol
	MakeDevice
	MakeNewDevice
	MyListenAddr
	MyTalkAddr
	OnDigEvent
	OnDigEventVDM
	OnEvent
	OnEventVDM
	OpenName
	OutputX
	PPoll
	PPollConfig
	PPollDisable
	PPollDisableList
	PPollUnconfig
	Remote
	RemoteList
	RemoveDevice
	Reset
	SendCmd
	SendData
	SendEoi
	SPoll
	SPollList
	Status
	Talk
	Term
	TermQuery
	TimeOut
	TimeOutQuery
	Trigger
	TriggerList
	UnListen
	UnTalk

	Appendices
	Appendix A - API Error Codes
	Appendix B - ASCII Codes
	Appendix C - Troubleshooting
	The IEEE 488 Bus Standard
	Analyzing the IEEE Bus
	Common Problems and Solutions
	New Standards Simplify Programming
	Frequently Asked Personal488 Questions

	Appendix D - Hardware Specifications
	Hardware Specifications
	PCI488 Specifications
	AT488pnp Specifications
	CARD488 Specifications
	AT488 Specifications
	GP488B Specifications
	GP488B/MM Specifications

	Appendix E - National Instruments — Driver488/NI/32 2.0
	Overview
	Program Requirements
	Installation
	Upgrading from a Previous Version
	Miscellaneous Hints and Tips
	File Structure

